FEATURES

14

The power of hindsight: lessons from plague
PETRA OYSTON
What can the transmission and evolution of this unusual pathogen teach us about how we might prepare for future emergent pathogens?

20

The virus is ‘dead’. Long ‘live’ the virus!
PAUL DUPREX & ELKE MÜHLBERGER
How do we face up to the global challenge of emerging viral infections?

26

Emerging fungal pathogens
KEN HAYNES
As the number of immunocompromised individuals grows, fungal pathogens are becoming ever more important.

30

Leishmania as a re-emerging pathogen
OWAIN MILLINGTON
Leishmaniasis is certainly a disease of current importance, but is there any evidence to suggest that it can be considered as a re-emerging disease?

34

Tuberculosis: forgotten but not gone
STEPHEN GILLESPIE
The world is confronted with the appearance of extremely drug-resistant strains of Mycobacterium tuberculosis. What is being done to combat this serious threat?

REGULARS

2
News
SGM Prize Medal 2011
Committee elections
... and much more

10
Microshorts

12
Conferences
Register for Harrogate

42
Schoolzone
New resources

44
Gradline
An international career

50
Outreach
Manchester Science Festival

53
Public Affairs
House of Lords 2010

58
Going Public
The Undil Estedelod

62
Hot off the Press

65
Reviews

67
Addresses

68
Comment:
Superbug harbinger?
DAVID LIVERMORE

PLUS...

38
Peter Wildy Prize Lecture
How the mushroom got its spots and other stories
SUE ASSINDER

60
Letters
The Bt-brinjal debate
SGM’s next Chief Executive

The SGM Council has appointed Simon Westwell as the next Chief Executive of the Society, in succession to Dr Ron Fraser, who retires in July 2010 after 15 years’ service. A feature on Simon’s background and aspirations for his new appointment will appear in the May issue of Microbiology Today.

New media update

FACEBOOK AND TWITTER

More and more people are getting their daily updates on upcoming SGM activities through Facebook and Twitter – via which we also give you the photos and gossip afterwards. Over 1,400 people are now connected to the SGM Facebook page, of whom more than two-thirds are regular users. As Facebook and Twitter are such an integral part of many people’s daily lives, social media are fast becoming a one-stop shop for sharing information. We encourage you to share any news or events happening in the microbiology world by posting on our Facebook wall or sending us a tweet and keep the SGM online community going from strength to strength. Suggestions are welcome for any other information you’d like to see from SGM or how often/what time of day you’d most like to see it. Leave us a comment on Facebook, a message on Twitter (@docGaurPromo) or even send an old-fashioned email if you prefer (l.udakis@sgm.ac.uk).

PODCASTS

Ever wondered about how the health claims from the manufacturers of pro- and prebiotics are regulated? Listen to Professor Rob Rastall from the University of Reading talking about the present and future for the functional food industry.

The second of our two new podcasts features Professor Wendy Barclay from Imperial College London. She tells us how she thinks public awareness and attitudes towards influenza infection and vaccination have changed since the swine flu pandemic in 2009. All the podcasts in our Microbe Talk series are available on both the main SGM website www.sgm.ac.uk/ news/podcast.cfm and our education website www.microbiologyonline.org.uk what-s-hot

ISEM RIVALS X-FACTOR!

It’s not often that microbiology oversteps reality TV gossip in the news, but recent press coverage from one of our journal papers did just that. The paper, “Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic”, was published in the December issue of ISEM. The novel species of bacterium described was interesting because it was discovered within a ‘rusticle’ a structure resembling a nutty iced. The bacterium was found to have iron-corrosive properties and is thought to be contributing to the deterioration of the famous ocean liner. Within an hour of the press release going out, the BBC and Guardian were on the phone wanting more information and the BBC story was online by mid-afternoon. By that evening, the story featured at number five on BBC Online’s ‘most read’ list – beating the latest news from X-Factor! The story was also circulated widely through the Twittersphere, with much intrigue surfacing over the word ‘rusticle’ – including a few amusing suggestions for alternative definitions! Who says science can’t be entertaining?

Local representatives

SGM is very grateful to our network of local representatives who provide valued support in promoting SGM grants, conferences and other activities to colleagues and students in their departments across the UK and Ireland. We thought it was time to acknowledge other activities to colleagues and students in their departments and publicize their excellent help so (with their permission) we have listed all active representatives on page 67. Please check the list to see who your local representative is.

If you are a member and would like more information from SGM or how often/what time of day you’d most like to see it, please leave a comment on Facebook, a message on Twitter (@docGaurPromo) or even send an old-fashioned email if you prefer (l.udakis@sgm.ac.uk).
Fleming Lecture

DR PETER CHEREPAPOV
(Imperial College London) will deliver his lecture, entitled Structural biology of retroviral DNA integration on Tuesday 12 April at the Society’s Spring Conference at the Harrogate International Centre. The Fleming Lecture is awarded for outstanding research by a microbiologist in the early stages of their career. Peter writes:

‘I wanted to be a scientist for as long as I can remember. It probably had something to do with a popular Soviet-era chemistry magazine we subscribed to, more specifically the Young Chemist section in it. Experiments recommended by the various scientists who wrote the articles became the genetic model for the actinomycetes, with versatile in vivo and in vitro genetics. David’s interest in antibiotics developed largely by accident, spurred on by studying the genetics of actinorhodin, the blue polyketide antibiotic pigment that gives Streptomyces coelicolor its name. After the complete gene cluster was cloned, segments of it were used to produce the first hybrid antibiotics in vitro and in vivo.

David studied Microbiology at the University of Strathclyde, gained a PhD on phage-host interactions at University of Warwick, then did postdoctoral research in Edinburgh on the genetics of E. coli cell division. He was a lecturer in Microbiology at Kent before returning to Warwick for 13 years as Lecturer, Senior Lecturer and there would make a modern safety officer want to murder someone. Unsurprisingly, my experimentation at home abruptly ended when my parents discovered a significant stash of rocket fuel I had concocted and kept on our balcony.

Years later, while a student in the Novosibirsk State University in Siberia, U.S.S.R., I won a scholarship to go to West Germany as an exchange student. My experience with HIV and retroviruses started at the University of Leuven in Belgium, where I undertook a PhD and my first postdoctoral tenure with Drs Erik De Clercq and Zeger Debyser. Ever since, my work has focused on retroviral DNA integration and the ways of inhibiting it. After almost 8 years in Leuven, I joined the laboratory of Dr Alan Engelman at Harvard Medical School. Through our collaborations within Harvard I was introduced to structural biology. I joined Imperial College London as a Senior Lecturer in 2005. In my group, we study the structural aspects of retroviral DNA integration, the mechanism of HIV resistance to integrate inhibitors and cellular factors involved in retrovirus replication.

Colworth Prize Lecture

PROFESSOR GEORGE SALMOND
(University of Cambridge) will deliver his lecture, entitled Bacterial sociology: quorum sensing, virulence, antibiotics and survival, on Wednesday 13 April 2011 at the Society’s Spring Conference at the Harrogate International Centre. The Colworth Prize Lecture is awarded for an outstanding contribution in any area of applied microbiology.

George studied Microbiology at the University of Strathclyde, gained a PhD on phage-host interactions at University of Warwick, then did postdoctoral research in Edinburgh on the genetics of E. coli cell division. He was a lecturer in Microbiology at Kent before returning to Warwick for 13 years as Lecturer, Senior Lecturer and

Professor. Since 1996, he has been Professor of Molecular Microbiology in the Biochemistry Department at Cambridge. He is a Professorial Fellow of Wolfson College. George has made important contributions to diverse microbiological areas, including bacterial cell division, methanotroph molecular biology, molecular phytopathogenesis, and my first postdoctoral tenure with Drs Erik De Clercq and Zeger Debyser. Ever since, my work has focused on retroviral DNA integration and the ways of inhibiting it. After almost 8 years in Leuven, I joined the laboratory of Dr Alan Engelman at Harvard Medical School. Through our collaborations within Harvard I was introduced to structural biology. I joined Imperial College London as a Senior Lecturer in 2005. In my group, we study the structural aspects of retroviral DNA integration, the mechanism of HIV resistance to integrate inhibitors and cellular factors involved in retrovirus replication.

SGM PRIZE MEDAL LECTURE

PROFESSOR SIR DAVID HOPWOOD is the recipient of the SGM Medal, awarded annually to a microbiologist whose work has led to a far-reaching impact beyond microbiology. He will deliver his talk, Streptomyces genomes: new routes to antibiotic discovery, on Monday 11 April at the Spring Conference, Harrogate International Centre.

David studied botany at the University of Cambridge, with a particular interest in genetics. When he graduated in 1954, it was suggested that the streptomyces, often thought to be intermediate between bacteria and fungi, would make an interesting subject for genetic analysis. During his doctoral studies at Cambridge, he discovered and harnessed natural gene exchange to make the first chromosome map of a streptomyces. With Audrey Glauert, he showed that the streptomyces are true bacteria in their cellular organization and that their resemblance to fungi must have arisen independently. Nevertheless, the streptomyces revealed many genetic novelties compared with other bacteria. More than 50 years later, after posts as Assistant Lecturer at Cambridge, Lecturer in Glasgow, and finally head of the Genetics Department at the John Innes Centre and Professor at the University of East Anglia, Norwich (now Emeritus), he is still interested in the same microbe – Streptomyces coelicolor – as on day one of his PhD studies. However, much water has flowed under the bridge in the meantime. Through the efforts of many scientists this organism became the genetic model for the actinomycetes, with versatile in vivo and in vitro genetics. David’s interest in antibiotics developed largely by accident, spurred on by studying the genetics of actinorhodin, the blue polyketide antibiotic pigment that gives S. coelicolor its name. After the complete gene cluster was cloned, segments of it were used to produce the first hybrid antibiotics by inter-species clonal. This was a catalyst for the development, again through a widespread effort, of the field of ‘combinatorial biosynthesis of unnatural natural products’. Later, he coordinated the project to sequence the large linear chromosome of S. coelicolor. The S. coelicolor genome and those of other actinomycetes currently under study reveal a huge metabolic potential waiting to be unlocked. The lecture will touch on some of the special features of Streptomyces genetics, including a unique chromosome structure and remarkable DNA transfer between strains, and will then focus on current efforts to ‘wake up’ the many ‘sleeping’ gene clusters for potentially valuable antibiotics, sorely needed in these days of increasing antibiotic resistance in dangerous pathogens.

Fleming Lecture

DR PETER CHEREPAPOV
(Imperial College London) will deliver his lecture, entitled Structural biology of retroviral DNA integration on Tuesday 12 April at the Society’s Spring Conference at the Harrogate International Centre. The Fleming Lecture is awarded for outstanding research by a microbiologist in the early stages of their career. Peter writes:

‘I wanted to be a scientist for as long as I can remember. It probably had something to do with a popular Soviet-era chemistry magazine we subscribed to, more specifically the Young Chemist section in it. Experiments recommended by the various scientists who wrote the articles became the genetic model for the actinomycetes, with versatile in vivo and in vitro genetics. David’s interest in antibiotics developed largely by accident, spurred on by studying the genetics of actinorhodin, the blue polyketide antibiotic pigment that gives S. coelicolor its name. After the complete gene cluster was cloned, segments of it were used to produce the first hybrid antibiotics by inter-species clonal. This was a catalyst for the development, again through a widespread effort, of the field of ‘combinatorial biosynthesis of unnatural natural products’. Later, he coordinated the project to sequence the large linear chromosome of S. coelicolor. The S. coelicolor genome and those of other actinomycetes currently under study reveal a huge metabolic potential waiting to be unlocked. The lecture will touch on some of the special features of Streptomyces genetics, including a unique chromosome structure and remarkable DNA transfer between strains, and will then focus on current efforts to ‘wake up’ the many ‘sleeping’ gene clusters for potentially valuable antibiotics, sorely needed in these days of increasing antibiotic resistance in dangerous pathogens.

Colworth Prize Lecture

PROFESSOR GEORGE SALMOND
(University of Cambridge) will deliver his lecture, entitled Bacterial sociology: quorum sensing, virulence, antibiotics and survival, on Wednesday 13 April 2011 at the Society’s Spring Conference at the Harrogate International Centre. The Colworth Prize Lecture is awarded for an outstanding contribution in any area of applied microbiology.

George studied Microbiology at the University of Strathclyde, gained a PhD on phage-host interactions at University of Warwick, then did postdoctoral research in Edinburgh on the genetics of E. coli cell division. He was a lecturer in Microbiology at Kent before returning to Warwick for 13 years as Lecturer, Senior Lecturer and
Grants Administrator in August.

Council that the Marlborough engagement of recruitment smoothly, facilitated by the incumbent Chief Executive, the replacement of SGM’s management (CRM) system, which will cover meetings, membership, journal sales, education and outreach activities. The system will be implemented over a 6-9 month period and will integrate with the SGM website, which will be updated in parallel. The new systems will enhance communication and interaction with members and others.

PRESIDENT’S BUSINESS

PROFESSOR HILARY LAPPIN-SCOTT welcomed two new elected members of Council: PROFESSOR NIGEL BROWN (University of Edinburgh) and PROFESSOR JOHN SINCLAIR (University of Cambridge). She then outlined plans for forthcoming strategic reviews. These will cover the SGM journals and publications business, the Spring and Autumn Conference structures and finances, and further engagement of SGM with government and policy-makers.

On the last point, SGM organized a Microbiology Awareness Campaign event at the House of Lords on 3 November hosted by Lord Soulsby of Swaffham Prior. The theme was Microbes and Climate Change. An article about the event can be found on p. 54 of this issue. Professor Lappin-Scott congratulated DANIEL BURDOSS and her team on the success of the event. Discussion centred on how best to maintain the profile of microbiology with this audience.

SGM had been invited to nominate individuals to serve on the next Research Excellence Framework (REF) sub-panels. Council was advised that 12 such nominations had been made, covering five sub-panels.

Following discussion to promote interaction of SGM with other professional microbiology societies, both national and international, it was agreed the President should host an annual dinner for invited guests, either at the Spring Conference, or as a stand-alone event.

SGM PRIZES

Council agreed on the recipients of the Fred Griffith Review Lecture, the Colworth Prize Lecture, the Fleming Lecture and the Peter Wildy Prize for Microbiology Education. Recipients will be announced in due course and will present their lectures at either the Spring or Autumn 2011 Conferences.

SGM FINANCES

The Treasurer, PROFESSOR COLIN HARWOOD, reported that the SGM’s finances had maintained a healthy position and had weathered the recent financial turmoil. Spending on grants and education remained high. However, uptake of international grants to support microbiology-led initiatives in developing countries had been low. Council therefore agreed allocation of up to US$12,000 for 2 years to support travel to international conferences by meritorious microbiology researchers and mentors funded by the African Women Scientists Working in Agricultural R&D (AWARD) fellowships. The AWARD programme is funded by the Bill and Melinda Gates Foundation but does not fund travel.

Council also agreed that successful applicants should receive 1 year’s free SGM membership.

Much of SGM’s income derives from its journal publication business. Since the SGM is the journal of record for the identification of novel bacterial species. The impact on this of the anticipated rapid rise in novel species identification through next generation sequencing needs to be explored. Council therefore approved an allocation of funds to support Professor Harwood’s suggestion of a by-invitation meeting of experts in bacterial taxonomy to explore this issue.

In other taxonomy news, Council agreed to continue support of the International Committee on the Taxonomy of Viruses (ICTV) for the next 3 years at £1,000 per year.

SGM MEETINGS

DR EVELYN DOWLEY, Deputy Scientific Meetings Officer, standing in for Scientific Meetings Officer PROFESSOR CHRIS HEWITT, outlined the major forthcoming meetings. They include the April 2011 Conference in Harrogate, with the theme of Intracellular life, and the September 2011 Conference at the University of York. The March 2012 Conference will be held in Dublin, during that city’s year as European City of Science.

EDUCATION ACTIVITIES

PROFESSOR JOANNA YERRAN, Education and Public Affairs Officer, reviewed recent and planned outreach events organized by SGM. In 2011, the Society will organize activities at the Manchester and Cheltenham Science Festivals and Big Bang. The increase in schools membership to 756 was again warmly welcomed, up 50 on the same time last year.

PUBLICATIONS

PROFESSOR HOWARD JENKINSON presented the minutes from the recent Publications Committee meeting. One highlight included the increase of the impact factor of JGV to 3.26, taking it to second place in the general-virology category. Council approved the request from PROFESSOR RICHARD ELLIOTT, JGV Editor-in-Chief, to appoint a Reviews Editor to solicit review articles and explore other innovations, for example compiling feature issues, hot topic articles and opinion pieces.

The next Council will be held in February 2011.

DAVID BLACKBOURN, GENERAL SECRETARY

Nominations for elected members of SGM Council

DR KIM HARDIE and DR PAUL HOKKINSSON retire from Council in September 2011. Under the new Articles of Association adopted at the AGM on 9 September 2008, there is one vacancy to fill.

Nominations must be proposed and seconded by Ordinary Members of the Society and should indicate the main area of microbiological interest of the nominee. Nominees must have been an Ordinary Member of the Society for at least 2 years and must indicate their willingness to be nominated in writing. Nominations should be sent to the SGM General Secretary, PROFESSOR DAVID BLACKBOURN (d.j.blackbourn@bham.ac.uk) or c/o SGM Headquarters, to arrive no later than 29 APRIL 2011. If the number of nominations exceeds the number of vacancies, an election will be held.
HEATLEY–PAYNE AWARD

Congratulations are due to the winner of the SGM winner of this award, DANIEL TRIMANS of University of East Anglia and the John Innes Centre. He will carry out a short research visit to the National Cancer Institute, Frederick, Maryland in May 2011. Following this, Daniel will travel to New Orleans to present his work at the ASM General Meeting. DR ALEX DICKSON, the US-based recipient of the Heatley–Payne Award, will be joining us in Harrogate to present her research and will also carry out a short research visit to the University of Glasgow, hosted by Dr Sheila Graham. This scheme is offered jointly with the ASPM. It supports the reciprocal exchange of one postgraduate student member to present their research at the other Society’s main conference and a visit to a laboratory in that country. The award has been developed to strengthen the bonds between SGM and ASPM. It is designed to benefit early-career microbiologists in the partner countries by giving them the opportunity to present their work overseas and experience the best of microbiology in the exchange country.

Full details of this scheme, and the Hayes–Burnet Award, are available on the SGM website. Anyone interested in applying for a 2012 award should look out for the announcement and deadline in Microbiology Today.

Travel & meetings

POSTGRADUATE STUDENT CONFERENCE GRANTS
All Postgraduate Student Associate Members are eligible to apply for a grant to support their attendance at one SGM meeting each year. Grants contribute towards travel, registration and accommodation expenses. The student need not be presenting their research, so it is an ideal introduction to scientific meetings at little or no cost to themselves or their supervisor’s budget. Applicants must be Postgraduate Student Associate Members resident and registered for a PhD in an EU country.

Closing date for Harrogate: 8 April 2011.

PRESIDENT’S FUND FOR RESEARCH VISITS
Up to £3,000 is available to support early-career microbiologists who are planning a short research visit to another laboratory (minimum visit 4 weeks, maximum visit 3 months).

Closing date for Harrogate: 8 April 2011.

TECHNICIAN MEETING GRANTS
All Associate Members who are technicians are eligible to apply for a grant to support their attendance at one SGM conference each year. Applicants need not be presenting at the meeting. Some microbiology technicians who are not members of SGM may also apply for a grant to attend a Society conference.

Closing date for Harrogate: 8 April 2011.

Medical microbiology support grants

ELECTIVE GRANTS
Funding for medical/dental/veterinary students to work on microbiological projects in their elective periods.

The closing dates for applications in 2011 are 18 March and 23 September.

TRAINEE SUPPORT GRANTS
Funding for SGM members carrying out small lab-based microbiology projects during either foundation or specialty postgraduate medical training. Up to £3,000 is available towards the consumables costs of a project.

The closing dates for applications in 2011 are 18 March and 23 September.

Education & development

NATIONAL EDUCATION DEVELOPMENT FUND
Small grants to members for developments likely to lead to an improvement in the teaching of any aspect of microbiology relevant to secondary or tertiary education in the UK.

Up to £1,000 is also available to support public engagement activities.

GRADUATION GRANTS
Postgraduate Student members who are not eligible for a free place on a Vitae (www.vitae.ac.uk) personal development course (National GRADSchool) may now apply for a grant from SGM to cover full course fees. Retrospective applications are not considered.

SEMINAR SPEAKERS FUND
Small grants to cover the travel and other expenses of up to two speakers on microbiological topics in annual departmental seminar programmes.

STUDENT SOCIETY SPONSORED LECTURES
These cover the travel and other expenses of up to two speakers on microbiological topics per society each year at student society meetings.

INTERNATIONAL INTERNATIONAL DEVELOPMENT FUND
The Fund exists to provide training courses, publications and other help to microbiologists in developing countries.

DIVISIONAL COMMITTEE ELECTIONS 2011

Under the new system for planning SGM’s scientific meetings (described in the November 2007 issue of Microbiology Today, p.146), members of Divisional Committees serve for 3 or 4 years. Replacements are now required for Members of the Committees due to retire in September 2011. There are two routes: the Divisional Committees themselves may nominate candidates; and Ordinary Members of the Society may make nominations. For the Virology, Eukaryotic Microbiology and Prokaryotic Microbiology Divisions, nominations must be in the cross-cutting theme in which the vacancy arises. The Irish and Education Divisions do not have cross-cutting themes. All nominees must be Members of the Society. Nominations are now invited for the following vacancies:

Division: Virology Eukaryotic Microbiology Prokaryotic Microbiology

Cross-cutting theme:

- Microbial diversity & evolution: No vacancies 1 vacancy 1 vacancy
- Fundamental microbiology: 2 vacancies 3 vacancies 2 vacancies
- Translational & applied microbiology: 2 vacancies 1 vacancy 1 vacancy
- Infectious disease: No vacancies 1 vacancy 2 vacancies

Division: Education Irish

2 vacancies 1 vacancy

All nominations proposed by Ordinary Members of the Society must be seconded by another Ordinary Member, and must include a statement that the candidate is willing to stand, and which Division and, where appropriate, cross-cutting theme the nomination is for. A nomination form is available on the Society website at www.sgm.ac.uk/meetings/divisions.cfm. Where the number of nominations from the Divisional Committees and Ordinary Members exceeds the number of vacancies, elections will be held. Nominations should be sent to the Chief Executive, Dr Ron Fraser, SGM, Marlborough House, Basingstoke Road, Spencers Wood, Reading RG7 1AG (r.fraser@sgm.ac.uk), to arrive no later than 18 April 2011. A list of current members of Divisional Committees is available on the Society website at www.sgm.ac.uk/meetings/divisions.cfm.
Bad news travels fast through mycorrhizae

Plants sharing a mycorrhizal network can exchange defence signals to help them ward off invading pathogens, according to a new study by scientists in China. They showed that when one plant in a network became infected with a pathogenic fungus, other plants in the network were less likely to become infected – and if they did, symptoms were milder. Around 80% of plants are colonized by fungi, with which they form symbiotic relationships. The fungal threads, called mycorrhizae, take in water and minerals from the soil in return for nutrition. The networks that they form allow plants to share these resources to protect themselves from drought. While using plant-to-plant communication to increase defence levels is not a new concept, studies have so far focused on signaling through air-borne molecules. The discovery of a new role for mycorrhizal networks has prompted the researchers to describe mycorrhizae as ‘the internet of plant communities’. PLoS One doi:10.1371/journal.pone.0013324

Microbial computers

Scientists have discovered how to build ‘logic gates’ into bacteria which could allow genetic engineers to turn cells into microbial computers. The researchers at the University of California – San Francisco constructed simple logic gates out of genes and inserted them into separate strains of Escherichia coli. The gates controlled the release of a chemical signaling molecule, allowing the cells to be connected in a cellular circuit. Synthetic biologist Dr Christopher Voigt, who is leading the project, said that the goal is to be able to programme cells using a formal language such as is used to write computer code. It is thought that this will enable cells to be programmed for a variety of purposes, including the production of pharmaceuticals, materials and industrial chemicals. Nature doi:10.1038/nature09565

Youthful yeast

Yeast is fast becoming an ally in our quest to stay looking young. Biotechnology firm Petrobota in California have been experimenting with yeast to find a way to reduce oxidative damage of cell membranes, which typically occurs with ageing. PUFAs (polyunsaturated fatty acids) are vital to the structure and function of cell membranes, but are vulnerable to attack by free radicals that cause oxidative stress. The researchers proposed that PUFAs containing deuterium – or ‘heavy hydrogen’ – would be less susceptible to free radical attack, as deuterium forms stronger bonds. By feeding yeast essential PUFAs containing deuterium, scientists showed that the cells were up to 150 times more resistant to oxidative stress compared to cells treated with hydrogen-containing fatty acids. The team of scientists is hoping to apply this technique to other cells, including those that are affected by oxidative stress in certain neurological diseases. Free Radical Biology and Medicine doi:10.1016/j.freeradbiomed.2010.10.690

Multi-tasking microbes offer clean energy hope

A rare strain of cyanobacteria that can produce hydrogen as well as carrying out photosynthesis may be a good source of clean energy. Microbes that generate hydrogen normally require a zero oxygen environment, which makes the process very costly to scale-up. However, Cyanobacterium 51142 is able to photosynthesize during the day (producing oxygen) and fix nitrogen by night, generating hydrogen as a by-product. The two processes are regulated by an internal biological clock that is set by changing light levels. Scientists at Washington University in St Louis, Missouri, have discovered that the regular cycling between photosynthesis and nitrogen fixation continues even in constant daylight. What’s more, the team has shown that hydrogen production is boosted in continuous light. The amount of hydrogen generated – 150 µmol per mg chlorophyll per hour – is the most ever recorded in natural cyanobacteria under normal atmospheric conditions. Nature Communications doi:10.1038/ncomms1139

Bees help banish mouth ulcers

Bees may soon be taking the sting out of mouth ulcers, say scientists at the University of Bradford. The sticky mixture of resin and wax called propolis which is produced by honey bees to seal their hives, has long been known for its antimicrobial healing properties. However, its use in medicinal products has been limited due to its insolubility in water and its strong, unpleasant smell. New researchers at the University of Bradford have managed to purify propolis in a way that retains its antimicrobial properties, eliminates its off-putting smell and makes it dissolvable in water. From this, they have developed a new mouth ulcer gel. As the purified propolis retains some of its natural stickiness, it is able to adhere well to the skin membrane, which is a major barrier to the effectiveness of mouth gels. The scientists are confident that there is a big market for propolis-based products as propolis is an antimicrobial, a strong antioxidant, non-allergenic and can boost immune function. University of Bradford – www.brad.ac.uk/mediscentre/press-releases/Title_34711_en.php

It’s not you, it’s my gut microbes

The bacteria that live in our guts could be influencing us more than we think – by helping determine the type of partner we choose. Researchers at Tel Aviv University have shown that symbiotic bacteria inside fruit flies can affect their choice of mate. The scientists argue that the process of natural selection is not just based on the individual living organism but on a larger unit called a ‘holobiont’ that includes symbiotic partners such as micro-organisms. Previous studies showed that fly populations that were divided and fed different diets preferred mates with the same nutritional background once the population was brought back together. The Tel Aviv team repeated this experiment with the addition of an antibiotic and found that specific mating preferences were eliminated. Analysis of phenotype levels showed differences between the two fly populations that disappeared after antibiotic administration. The researchers speculate that bacteria were driving this change in phenotypes. Lasiodiplodia plantarum is thought to be the species responsible for the diet-related mating preferences. When this strain was reintroduced into antibotic-treated flies, preferential mating behaviour resumed. PNAS doi:10.1073/pnas.1009906107

Gut microbes. Perman / Science Photo Library

Honey bees. Ian Atherton

Hydrogen fuel sign. Martin Bond / Science Photo Library

Thinkstock

iStockphoto / Circuit board: Stockbyte / Thinkstock

Bad news travels fast through mycorrhizae

Microbial computers

Youthful yeast

Microbial computers

Youthful yeast

Multi-tasking microbes offer clean energy hope

Bees help banish mouth ulcers

It’s not you, it’s my gut microbes

Microbial computers

Youthful yeast

Multi-tasking microbes offer clean energy hope

Bees help banish mouth ulcers

It’s not you, it’s my gut microbes
SPRING CONFERENCE 2011
11–14 APRIL 2011
WWW.SGMHARROGATE2011.ORG.UK

Book soon to take part in a scientific programme covering a broad range of microbiological themes.

Scientific Sessions
Intracellular life | Seeing the cell through the ‘eyes’ of the virus | Social evolution in micro-organisms | Mechanisms of DNA repair | Microbial PAMPs | Life at zero growth rate | Vaccines | Meningitis | Osmotic & oxidative stress responses | Food biosecurity | Insect symbiosis | Microbes & maths

Virology Workshops
Pathogenesis | Replication & gene expression | Structural virology | Cell-to-cell transmission | Vaccines & antivirals

Programme Preview
A booklet containing details of the scientific programme and summaries of each session is enclosed with this issue of Microbiology Today. Further information, including poster titles, will be published on the SGM website as it becomes available.

Prize Lectures
SGM Prize Medal | Sir David Hopwood FRS
Fleming Lecture | Peter Chessapov
Colworth Prize | George Saimond

Approved for CPD by the Royal College of Pathologists and the Institute of Biomedical Science – up to 25 points available.

Newly approved by the Society of Biology – up to 70 CPD credits available.

Grants
Conference grants are available to eligible SGM Associate Members who are postgraduate students, technicians or retired, and to Undergraduate Members who are presenting work at the conference.

GETTING PUBLISHED – April 13 (with lunch)
The essential guide to the ‘whys’ and ‘hows’ of getting your research published.

Personal Development Workshops
Networking workshop & supper for early-career delegates – April 10
Take part in some fun activities to improve communication skills and add value to your conference experience.

Working with the media – April 12 (p.m.)
Explore the opportunities, find out how to avoid pitfalls and join in discussion about science in the media.

Getting published – April 13 (with lunch)
The essential guide to the ‘whys’ and ‘hows’ of getting your research published.

www.sgmharrogate2011.org.uk
Since ancient times, *Yersinia pestis* has wreaked havoc on the human population. But what can the transmission and evolution of this unusual pathogen teach us about how we might prepare for future emergent pathogens?

The power of hindsight: lessons from plague

Plague, caused by *Yersinia pestis*, is a World Health Organization (WHO) notifiable disease. Every year several thousand cases are reported, although this is probably an under-representation of the actual number of cases. Infection circulates in sylvatic foci, i.e. in rodent populations where it is transmitted between animals by the bite of infected fleas. Humans are accidental hosts, with most infections occurring following the bite of an infected flea when in close contact with infected rodents. Body lice have also been shown to be vectors for plague. Infection can also result after handling and skinning of dead animals, usually in hunters. Domestic animals such as cats are also susceptible to plague, and can transmit the disease to humans during close contact.

The distribution of human plague coincides with the distribution of sylvatic plague. Three clinical forms of plague occur in humans: bubonic, septicaemic and pneumonic plague.

Bubonic plague is the classical form of the disease. Patients present with fever, chills, headache and a painful bubo. Bubonic plague arises as a result of infection of the lymph nodes following the bite of an infected arthropod vector or by contamination of a wound with an infected flea. Septicaemic plague occurs when infected blood spreads to other areas of the body, causing fever, chills, headache and a generalised illness. Pneumonic plague occurs when the bacteria spread to the lungs, causing a severe respiratory illness with coughing, difficulty breathing, chest pain and fever. Both bubonic and septicaemic plague can develop into pneumonic plague if left untreated.

Since ancient times, *Yersinia pestis* has wreaked havoc on the human population. But what can the transmission and evolution of this unusual pathogen teach us about how we might prepare for future emergent pathogens?
of an open skin lesion. Patients develop a significant bacteremia. Untreated, the case fatality rate is 40–60%, but where therapy is used this can be reduced to around 14%.

When *Y. pestis* infection with bacteremia occurs without the development of lymphadenopathy, this is primary septicaemic plague which occurs in about 10–25% of cases. Due to difficulties in diagnosis and thus delays in appropriate antibiotic therapy, and the acute nature of the disease, mortality rates are higher than for bubonic plague. Untreated, the disease, mortality rates are higher than for bubonic plague. Untreated, the case fatality rate is 40–60%, but where therapy is used this can be reduced to around 14%.

Primary pneumatic plague arises as a result of inhalation of plague bacilli in infectious aerosols, such as would be produced when an infected animal dies or is handled. Septicaemic plague is almost always fatal. Primary pneumonic plague poses a significant hazard to close contacts.

HISTORY

Cycles of plague have swept across the world in three documented pandemics. The first pandemic is known as the Justinian Plague (AD 541–544). The plague arrived in Egypt from Ethiopia, and then spread through North Africa, Europe, Arabia, and Central and Southern Asia. Epidemics spread in 8- to 12-year cycles, often repeatedly infecting the same areas. The second pandemic started in the 14th century, spreading from the steppes of Central Asia westward along trade routes. The plague then spread northwards in Europe, killing an estimated 40% of the population and earning it the name the Black Death. The third pandemic appears to have originated in the Chinese province of Yunnan in 1855, spreading due to war and troop movements to the southern coast, reaching Hong Kong in 1894. Maritime routes allowed the global spread of the bacterium also has many pseudogenes in pathways that are no longer essential. Indeed, recombination appears to be an ongoing process, evident in the present day. Whilst the organism has acquired additional genes during its adaptation from enteric pathogen to systemic, arthropod-vectored pathogen, the bacterium also has many pseudogenes in pathways that are no longer essential.

TRANSMISSION

Arthropod-vectored transmission depends upon a significant septicaemia developing in the infected mammal. Plague can survive and replicate in the digestive tract of the flea to form large, dark masses visible by microscopy. The proventriculus of the flea is lined with spines of cuticle and, as the bacterial aggregates accumulate among the spines, the passage of blood into the midgut of the flea is restricted, resulting in the flea becoming blocked. As the blocked flea attempts to feed, fragments of the bacterial aggregates are regurgitated into the bite site and the mammalian host is infected; this transmission method has been shown to be quite inefficient. Additionally, high levels of septicaemia in the infected mammal are required to allow the infection of a subsequent flea vector, this may explain the emergence of highly virulent strains in order to ensure transmission. Thus, when we consider the emergence of plague, we must consider its adaptation to both mammalian and arthropod hosts, its inability to survive well in the environment which has led to vectored transmission, and the limitations of the vector which have necessitated such a massive septicaemia to ensure transmission, which ultimately kills the host.
As mentioned above, in addition to being an arthropod-vectored disease, plague can also be transmitted in aerosols to produce pneumonic plague. In the modern world concerned about biological threats, it is anticipated that plague as a weapon would be released as an aerosol to produce pneumonic plague casualties, who in turn would pose a significant risk to contacts. This is in contrast to many other biothreat agents, such as tularemia or melioidosis, where inhalation results in a pneumonic, but there is no human-to-human aerosol transmission. No doubt this ability to spread efficiently in aerosols contributed to the pandemic spread of plague. However, we know very little about the behaviour of Y. pestis in aerosols, nor why it is so efficiently transmitted when other pathogens are not.

LESIONS TO BE LEARNT

So what can we learn from following the emergence of plague? Y. pestis is a clonal derivative of Yersinia pseudotuberculosis which emerged relatively recently in evolutionary terms, between 15,000 and 20,000 years ago. The changes required to go from the enteric pathogenic lifestyle of Y. pseudotuberculosis to the complex lifestyle described above are many and varied. It would be hard to predict that this is how the organism would evolve, either in terms of biology or in terms of genetics. So perhaps it is not possible to predict the next new disease to emerge in terms of biology or in terms of genetics. If anything, the ongoing outbreaks.

First, the risk of an outbreak appears to be increased during times of upheaval, such as war or natural disaster. These events can disrupt and remote places are detected in a timely manner.

Second, there is also a need for an understanding of the natural host of a zoonotic pathogen and its mode of transmission. For example, it is known that rats living close to people in endemic areas pose a plague risk to humans. However, culling rat populations is not the straightforward solution it may appear. Insecticides must be used to kill fleas if rodent hosts are to be killed and this must be done before rodenticides are employed. Such approaches are labour-intensive and not particularly effective on a large scale in enzootic areas. More effective are measures to eliminate rodent habitats and a reduction in the appeal of residential areas to rodents, combined with treatment of domestic pets for fleas. However, during an outbreak of plague inhumans is it important to control populations of both fleas and rodents. If the rodent population has been reduced in number by plague, fleas will seek alternative hosts, including man, resulting in spread of bubonic plague. Thus fleas must be reduced before control of rodent reservoirs can then be undertaken.

The Indian outbreak also illustrates a third lesson: international travel means diseases travel around the world much more quickly than previously. People fled the area. Countries closed their borders.

By late September, more than 300 suspected cases of pneumonic plague were reported in the Surat area and 36 deaths. People fled the area. Countries closed their borders. However, lessons to be learnt from the pandemics and ongoing outbreaks.

Finally, the often repeated story of antibiotic resistance for plague, as for so many infections. Therefore, it is imperative that outbreaks of serious disease in often disrupted and remote places are detected in a timely manner.

The Black Death was not caused by Y. pestis. These resistant strains are rare, but for other pathogens such as Bacillus anthracis, inherent resistance is the norm. Therefore, not only is there a need to determine the resistance profile of emerging pathogens and identify suitable therapeutics, but there is also a need for novel medical countermeasures to increase the available options. Vaccines offer solid protection against specific pathogens, but for a completely new licensed vaccine to be developed against an emerging pathogen, the timescales are measured in decades.

So, based on our knowledge of pandemic plague, we can identify areas of concern: we need to address for any other emerging diseases. However, there is one great unanswered question for plague: were the pandemics driven by human activity facilitating spread or were pandemic strains different to endemic strains? There has been some unsupported speculation that pandemics are the result of a new strain caused by Y.pestis, despite plague genes being amplified repeatedly from skeletons in plague pits dating from that period. This discussion has been stimulated by discrepancies between modern plague and the historical reports from the period. For a summary of the evidence against that speculation, the reader is directed towards a letter by Michel Drancourt and Didier Raoult (see below).

FURTHER READING

© Crown Copyright Dstl 2011

“Perhaps it is not possible to predict the next new disease to emerge based on a knowledge of current organisms.”
Microbiology Today
FEB 2011

The virus is ‘dead’.

Long ‘live’ the virus!

Emerging and re-emerging viruses will be a continuing threat to human health because of their amazing potential to adapt to their current hosts, to switch to new hosts and to evolve strategies to escape antiviral measures. Moreover, global climate changes and destruction of habitats, in combination with extensive travel activity, may promote the spread of currently unknown pathogens. This threat comes not only from naturally occurring infections, but may also come from bioterrorism attacks involving deliberate release. Some emerging viruses, such as flaviviruses, have attracted substantial scientific and popular attention despite the fact that less than 3,000 cases have been described since the first isolation of Marburg virus more than 40 years ago. Nevertheless, the deadly appearance of these viruses, with fatality rates of up to 90\%, would most likely cause panic and social disruption in the case of an outbreak.

Seeing the virus through a disease in the host
Contagium vivum fluidum quite literally means ‘infectious living liquid’. Around the early 1900s, science and medicine only indirectly witnessed the effects of these ‘liquids’ in their hosts, leading to the inextricable linkage of virology and pathology. Rubies virus infection was visualized through the resulting acute encephalitis, while foot-and-mouth disease virus, the first animal virus to be filtered, manifested itself through blisters and weight loss in cloven-hoofed animals. Not until electron microscopy opened our eyes to crown-like coronas, star-like astros and sand-like arenas did the veil start to lift on these agents of disease which, for millennia, wreaked untold suffering across the globe.

Virology’s tenet of ‘isolate, attenuate and vaccinate’ was central in the 1950s. With the advent of in vitro cell culture, phenotypes were extended in this in vitro world and cytopathic effects such as cell-to-cell fusion were invaluable in describing what viruses did outside of an animal. This opened the door for pioneers such as Merck’s Maurice Hilleman, a vaccinologist of huge stature, to develop measles, chickenpox and hepatitis A and B vaccines, to name but a few. Indeed, like Henrietta Lacks of HeLa cell fame, her daughter Jeryl Lynn remains immortalized in the JL mumps vaccine strain. In those halcyon days, empirical, ‘blind’ passage of human pathogens through non-human cell lines or eggs at non-optimal temperatures was the modus operandi. However, the term ‘empirical’ far from diminishes these achievements and, when these accomplishments are weighed against the aspirations of 21st century rational vaccinologists, the scales are tipped well in favour of the pragmatists. It would be difficult to perform either a comprehensive or even credible analysis of the tremendous impact these empirically derived, virus vaccines have had on human health. Not only do they represent some of the most complex biopharmaceuticals yet produced, they also provide an example of how inherently unstable, oftentimes live-attenuated, products can be manufactured safely, formulated effectively and distributed globally. The scene was now set for humankind to wage war on some of our greatest foes.

How do we face up to the global challenge of emerging viral infections? With a solid grasp of the historical perspective and armed with the latest genomic toolkit, we can now evaluate the relative merits of eradication, vaccination and chemotherapy.
“It is only by understanding virology’s history that one can fully appreciate the plethora of emerging viruses yet to be discovered and the possibilities the past 30 years of molecular virology afford.”

(maping the molecular basis of attenuation, which was far from trivial. Again the pox virologists led the way, and a single nucleotide in the untranslated region of the genome was shown to be a key determinant of the attenuation phenotype. Viruses have since been manipulated in many ways, including the replacement and addition of extra genes, and genomes have been both split and rearranged in previously unimaginable ways. It is fair to say that virology and pathology diverged significantly during the genomic era. Promoters, atomic structures and site-directed mutations of single amino acid codons in open reading frames were the order of the day. Today, Fred Sanger’s first 5,386 nucleotide genome of the single-stranded bacteriophage \(\Phi X 174 \) could be synthesised in its entirety de novo for US$2,000. The scene was set for the vaccine tool kit to be expanded and rational vaccinology was born.

DEALING WITH EMERGING PATHOGENS AND EVOLVING CHALLENGES IN GLOBAL HEALTH

Why are these historical perspectives important in an article which aims to discuss the global challenges of emerging viral infections? It is only by understanding virology’s history that one can fully appreciate the plethora of emerging viruses yet to be discovered and the possibilities that the past 30 years of molecular virology afford. What has become apparent over the last number of years is that there are many unidentified viruses present and circulating in unidentified animal reservoirs. Although, based on our molecular, pathological and epidemiological expertise, we would like to believe that we have the skills and resources to predict when and where novel agents will arise, that is far from the case. There are many other articles which focus on the virus hunters who boldly go where many virologists fear to tread. They deal with emerging and re-emerging viral pathogens and grasp the nettles of Ebola, Lassa and Rift Valley fever viruses in Africa, Nipah virus in South East Asia, Chikungunya in India. Crimean Congo hemorrhagic fever virus in Turkey and Pakistan. New World arenaviruses in South America, H1N1 (2009) ‘swine flu’ across the globe, Dengue virus in Central and South America, Indonesia and Cape Verde, and severe acute respiratory syndrome virus in China. Emerging viruses are not restricted to the developing world and stark lessons and significant economic costs are associated with the to-date-unexplained introduction of West Nile virus into the USA. This crystallizes why these emerging pathogens matter from both public health and economic standpoints.

Not all re-emerging viruses need to be associated with significant...
mortality to provide cause for concern. The circulation of mumps virus in the USA and the UK in university-age students might be an early warning of waning immunity, indeed mumps has recently been designated a re-emerging virus. Could Jeryl Lynn’s longevity be in threat as viruses do what they do best – evolve? All of these examples highlight the critical role microbiology plays in global health and show that it is vital to maintain a cohort of international virologists who are well-versed in pathogens, molecular epidemiology and zoonotic infections. International surveillance, research and coordinated cooperation in battling emerging and re-emerging viruses are essential. Investment in state-of-the-art facilities, such as The National Emerging Infectious Diseases Laboratories (NEIDL), is essential. Part of a national network of secure facilities, researchers in these laboratories are dedicated to the development of diagnostics, vaccines and therapeutics to combat emerging and re-emerging infectious diseases in biosafety levels 2, 3 and 4, and the latter being the highest level of containment possible.

ERADIATION, DESTRUCTION AND RE-CREATION USING SYNTHETIC BIOLOGY

As molecular virologists who recognize the utility of returning to the pathological roots of virology, our laboratories see pathogens and attenuation as two sides of one coin. We believe that it is essential to understand primary pathogens and dissect the early cells targeted by both viruses and wild-type viruses. In order to do this, we contend that we need to take one step back and develop reverse genetics systems for viruses which have never been passaged in vitro. For too long we have relied on laboratory-adapted viruses, which use non-pathologically relevant receptors and exhibit spurious cytopathic effects, thus leading us in the wrong direction. Even though we have trained ourselves to become proficient molecular biologists, our skills pale in comparison to the greatest genetic engineer, nature itself. This is where caution is required as it is evident that biological agents evolve to fill a niche and, even though eradication is a noble goal, it might not be without concomitant risks, especially if vaccination was discontinued. In 2011, depending on your faith or lack of faith in humanity, discussions pertaining to the destruction of the remaining vials of smallpox might be considered somewhat quaint or even passé. There is no question that although eradication is a noble goal, there is a fundamental distinction between eradication from general circulation and elimination from controlled environments such as high-containment biosafety level 4 facilities.

In the halcyon days of vaccinology, the idea of synthesizing the complete 180,102 base pair genome of smallpox virus lay firmly in the realms of science fiction. However, times have changed and the work of Wimmer and colleagues fired a shot across the bows of the good ship ‘Eradication’ when they created a synthetic, full-length infectious clone of the virus. In 2010 proved that consigning smallpox to the history books was not an exception. With a genome of only 53,882 nucleotides and the availability of robust reverse genetics systems for negative-strand RNA viruses, the recreation of one of the most virulent animal pathogens known is far from impossible and the potential for such a virus to ‘re-emerge’ from a molecular clone must be recognized. With this in mind, it must be considered that eradication of a virus is a redundant concept which, in the modern world, should be consigned to the history books or, for want of a better term, eradicated.

LONG ‘LIVE’ THE VIRUS

Where does this leave us in terms of the global challenges of virus infection? Are all the empirical advances of Hilleman lost and are the rational vaccinologists wasting their time trying to generate new vaccines to help eradicate agents which are very easy to regenerate? To use the old adage, ‘formalism is formalism’. It is better that international funding agencies are developing and supporting a new generation of scientists who are driven to understand the intricacies and interplay between pathogenesis and attenuation. Only by appreciating these interleaved aspects of key infectious diseases can we hope to be able to shift the historical paradigm of vaccinology from simple to targeted isolation, from empirical to rational attenuation and from nonspecific to tissue-targeted vaccination. In addition, due to the huge developmental costs involved, vaccines are not really attractive candidates for most of the highly pathogenic, emerging viruses. Therefore, the development of antiviral therapeutics is a critically important part of being prepared to combat emerging and re-emerging viruses.

In many ways, virology has come full circle and virologists and pathologists are re-embarking their historical roots. More importantly, they must recognize the need to liaise with immunologists, cell biologists, pharmaceutical chemists and global decision-makers. In this interdisciplinary world, there are unrivalled opportunities and technologies which permit the design and development of new vaccines. The development of antiviral therapeutics can hope to be a commercial success, where intellectual prosperity is dispersed. However, a long overdue renaissance in vaccinology has commenced, and it is with anticipation and excitement that we wait to see progress in the next decade.

PAUL DUPREX

Associate Professor of Microbiology, Department of Microbiology, Boston University School of Medicine, and Director of the Cell and Tissue Imaging Core, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 72 East Concord Street, Boston, MA 02118, USA 惇＋1 617 638 4294, email pduprex@bu.edu

ELKE MUHLBERGER

Associate Professor of Microbiology in the Department of Microbiology, Boston University School of Medicine and Associate Director of the Broadslade Production Core, NEIDL 惇＋1 617 638 8236, email mkuhlbe@bu.edu

FURTHER READING

Emerging fungal pathogens

As the number of immunocompromised individuals grows, fungal pathogens are becoming ever more important. How are functional genomics technologies helping to combat these less than well known eukaryotic adversaries?
butes. The remaining 20% of genes encoded novel virulence-associated proteins, including transcription factors, proteins involved in chromatin remodelling and, interestingly, a gene with no known function. When STM methodology was applied to C. glabrata, a surprising finding was made. Rather than attenuation, inactivation of the transcription factor Ace2 prompted a 200-fold increase in the ability to cause disease. This was echoed in the C. neoformans screen, where a total of 33 mutants with increased infective capacity were seen. Applying this technology to pathogens such as C. albicans is complicated by the fact that this species has a diploid genome. However, recently a set of homozygous, knock-out strains representing ~11% of the mutants with increased infective capacity were seen. These approaches will yield valuable information on host-pathogen interactions and also allow analysis of evolutionarily important pathogens, an important consideration given the continued emergence of novel, previously untested pathogens. One of the principle messages obtained from studies aimed at elucidating fungal virulence is that there appears to be a group of shared attributes that all fungi need to cause disease. Below, I have listed four that I believe to be important.

It almost goes without saying, and sometimes does, that the ability to grow and thrive at 37°C is absolutely essential for fungi to exploit human niches. Nutritional plasticity, or at least the ability to utilize many different carbon and nitrogen sources, and to scavenge limiting elements such as iron, is a second common theme in host survival. The cell wall is also crucial to the success of a fungal pathogen. This is hardly surprising as it is the first point of contact between the invading organism and the host. However, it is not just the structural integrity of the wall that is important (which will be discussed later in the section on antifungal biology), but also its composition. For example, C. albicans changing the cell wall through removal of cell-wall-associated proteins, or their post-translational modification can have divergent effects, e.g. an attenuation or increase in the ability to cause disease. Finally, all successful pathogens need to be able to recognize and adapt to the new conditions encountered within the human host. For many pathogens, the host environment is different to its natural habitat, e.g. A. fumigatus is usually found in leaf litter, and species that are natural inhabitants of humans, e.g. C. albicans, often cause disease in sites that are distinct from their usual niche. Hence the host environment is likely to be stressful in terms of a number of environmental parameters, e.g. pH, osmolarity, and the presence of reactive oxygen and nitrogens species. Pathogenic fungi must be able to survive such environmental insults. Underpinning these common traits are orchestrated, integrated signalling and regulatory pathways, the components and wiring of which may vary from species to species (this in itself is an active area of research), but have evolved to solve the same problems: growth at 37°C, nutritional competitiveness, cell-wall integrity and adaptation to the host environment. Without solving these problems, infection and subsequent disease progression would not take place.

EXPLOITING VIRULENCE ATTRIBUTES

Can these attributes be exploited for the development of therapies and/or novel diagnostics? The short answer is yes. The fungal cell wall contains a number of polysaccharides that not only function to give it structural integrity, but also its amazing plasticity. These polysaccharides are synthesized by a group of glycosyltransferases that add additional sugar units to the growing polymer. One of these enzymes, β-1,3-glucan synthase, is the target for the novel echinocandin class of antifungals. That said, and despite the success of echinocandins, many of the other attributes needed for fungal survival in the host, including other aspects of cell-wall biology, remain unexploited in terms of antifungal chemistry and/or diagnostics. One reason for this is undoubtedly technical, i.e. a lack of high-throughput functional assays. A second is that most large pharmaceutical companies do not have an antifungal discovery programme. However, this offers an opportunity for academic laboratories and Small and Medium Enterprises (SMEs) to fill the gap. To do this, much more research on the molecular basis of disease, in a large number of pathogens, needs to be undertaken, and this requires funding. The MRC Infectious and Immunity (BBS) panel currently funds grants that could be classified by microbial groups in the following ratios: virology 52%, bacteriology 28%, parasitology 19% and mycology 1%. To ensure a flow of new therapies and diagnostics for current and emerging fungal disease, this needs to change.

WILL NOVEL PATHOGENS EMERGE?

There must exist out there that share these attributes, and/or that are capable of growth in the expanding immunocompromised patient population, only a tiny fraction of the estimated one million fungal species have been scientifically described. If one looks at the recent literature, a group of fungi are starting to raise their heads as pathogens. These include, but are not limited to, species of filamentous fungi (e.g. Aspergillus spp., Alternaria spp., Fusarium spp., Penicillium spp., Pseudallescheria boydii and Scopulariopsis prolificans) and yeast-like organisms (Trichosporon spp. and Rhodotorula rubra). In addition there has been a shift in the incidence of candidiasis with, for example, in recent years, some species of filamentous fungi (e.g. Candida lusitana) new causing significant levels of disease. This list is likely to develop both in terms of numbers and individually important species, especially in light of increases in the number and nature of immunosuppressed patients. Furthermore, the variation in sensitivity of these species to commonly used antifungal agents, and also the policy of antifungal use, is likely to impact on their incidence. There is thus a need to be vigilant and to expect the appearance of the unexpected.

Fungi are among some of the most successful organisms on Earth. They have exploited a huge array of niches and it is testament to the immune defences of the human host that so few have evolved to be our natural pathogens. That said, the advances in medicine that have been so beneficial have ironically opened a niche to the immunocompromised patient, which these versatile and adaptable organisms can exploit. As Dr Ian Malcolm (Jeff Goldblum) said in Jurassic Park: ‘Life finds a way’. Expect more of them to pop up.

Thankfully, we now have tools and approaches that will allow us to analyse every species as it emerges. Furthermore, it is likely that these approaches will reveal both species-specific and, perhaps more telling, further common attributes that can be exploited in disease management.

ACKNOWLEDGEMENTS

I would like to thank Elaine Beglely, Alan Brown, Stephen Mitchell and Ian Jamie for helpful comments. I owe all my colleagues, past and present, at Imperial, particularly in the labs of grate for making the last 26 years such fun. Work from the Haynes lab described herein was supported by BBSRC.

KEN HAYNES is Professor of Fungal Biology and Chair in Systems Biology, Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Staddon Road, Exeter EX4 4QD (tel: 01392 725152; email k.bhaynes@exeter.ac.uk)

FURTHER READING

Leishmaniasis has been recognized for several hundred years, with descriptions of cutaneous lesions as early as the 7th century BC. However, it wasn’t until early in the 20th century that Major William Leishman and Charles Donovan independently identified a parasite as the causative agent of ‘kala-azar’. Writing in 1904, Leishman suggested that the identification of Leishmania would ‘help us in clearing up the rest of the life history of the parasite, and put us on the track to what should be our ultimate goal – the prevention and, if possible, the stamping out of the disease’. Yet, despite over a hundred years of intensive research into understanding both this protozoan parasite and the host biology, cases of leishmaniasis in the 21st century are on the increase, with widespread drug resistance and no effective vaccine.

It is now known that there are two distinct forms of the disease – visceral leishmaniasis (or kala-azar) and cutaneous infection – and these are each associated with infection by specific species of Leishmania. Cutaneous leishmaniasis often heals over time, leaving the patient disfigured and scarred, but it can recrudesce following treatment or spread to other areas, causing a diffuse cutaneous infection, particularly in immunocompromised individuals. A more severe muco-cutaneous form of infection is characterized by destructive ulceration of mucosal membranes and associated tissue. Visceral disease is by far the most severe form of leishmaniasis and is associated with infection of major organs, namely the spleen, liver and bone marrow. Patients generally present with symptoms of persistent infection and fever associated with chronic inflammation, and, if left untreated, the systemic disease is usually fatal.

Leishmaniasis has been recognized since ancient times and, with at least 50,000 deaths a year due to this parasitic infection, it is certainly of current importance. But is there any evidence to suggest that it can be considered as a re-emerging disease?
Together, Leishmania infections are found in 88 different countries and account for an estimated 12 million infections each year. Each year, there are approximately 500,000 new cases of visceral leishmaniasis (causing over 60,000 deaths) and 1.5 million cutaneous infections, with the latter primarily seen in areas of Afghanistan, Iran, Iraq, Saudi Arabia and Sudan. Whilst these figures highlight the importance of treating those infected, they are almost certainly an under-representation of the number of infections due to a lack of reliable diagnoses, a protracted asymptomatic phase and the fact that reporting is only compulsory in 32 countries. Indeed, it is estimated that the real burden of disease could be as much as four to five times higher than is reported. It is therefore clear that leishmaniasis represents an important tropical disease, but can it really be considered as a re-emerging pathogen? There are several important factors that suggest that this may be the case:

MOBILIZATION OF PEOPLE

As described above, Leishmania parasites were first identified in soldiers as they spread throughout the British Empire. Recently, very little has changed in over 100 years and many cases of leishmaniasis are seen in hospitals in the developing world—where are they infected, many infected individuals have been restricted predominantly to the southern regions of several Mediterranean countries, where the prevalence can be as high as 10% or more. In these countries, the parasites are found in a diverse range of mammalian reservoir hosts, depending on the species of parasite, the geographical location and the local habitat. Therefore, changes to these intricate ecosystems can have implications for the zoonotic transmission of infection. Our interesting example is the description of an expansion in the population of the reservoir hosts (Psammomys obesus; fat sand rat) and Meriones spp. (gerbil), which may be associated with an increase in vegetation for which the camel is the only natural competitor. Unfortunately, the replacement of the camel by off-road vehicles has inadvertently allowed these reservoir hosts to thrive, demonstrating the complexity of such ecosystems and the potential for them to impact on global health.

ENVIRONMENTAL CHANGES

As natural transmission of Leishmania is through the bite of a sandfly, infections are obviously seen only in areas where the vector is found. In Europe, cases of leishmaniasis have been restricted predominantly to the southern regions of several Mediterranean countries, where the prevalence can be as high as 10% per 100,000 and seroprevalence in dogs can reach 50%. Until recently, it had been assumed that sandflies were not found in central Europe, and studies in sandfly habitats across central Europe. Indeed, several reports suggest that an increase in temperature by just 1°C would result in conditions suitable for sandflies in Austria and considerable expansion of other sandfly habitats across central Europe. Indeed, several reports have demonstrated the occurrence of sandflies in areas of Germany and Belgium. Clearly, this has important implications for the spread of Leishmania, and isolated cases of visceral and cutaneous leishmaniasis have recently been described in patients from Germany and from southern England, respectively.

IN CONCLUSION

These three global influences on Leishmania transmission and disease burden suggest that we may need to think of this parasite as a re-emerging pathogen and prepare public health strategies for this.

The replacement of camels by off-road vehicles for desert transport may be inadvertently increasing the host reservoir for leishmaniasis.

The three global influences on Leishmania transmission and disease burden suggest that we may need to think of this parasite as a re-emerging pathogen and prepare public health strategies for this.”

REFERENCES

WHO web pages on leishmaniasis available at www.who.int/leishmaniasis/en/

A cutaneous leishmaniasis lesion. The ulcer on the patient’s leg has been treated in a traditional remedial manner. © A Castro, QDA, WWF / Source: Photo Library
Tuberculosis: forgotten but not gone

UK scientists had an important role to play in the development of the first antibiotics for the treatment of tuberculosis in the mid-20th century. As we enter the second decade of the 21st century, the world is now confronted with the appearance of extremely drug-resistant strains. What are UK scientists doing this time to help combat this serious threat?

Table 1: Some key events in the history of TB drug discovery

<table>
<thead>
<tr>
<th>Year</th>
<th>Antibiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>1949</td>
<td>1,2-Diaminocyclohexane acid</td>
</tr>
<tr>
<td>1952</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>1954</td>
<td>Pyrazinamide</td>
</tr>
<tr>
<td>1955</td>
<td>Cycloserine</td>
</tr>
<tr>
<td>1962</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>1963</td>
<td>Rifampicin</td>
</tr>
</tbody>
</table>

The disease was first recognized and described as phthisis by Hippocrates in the 4th century BC, but it was not until the last decade of the 19th century that its cause was unequivocally determined when Robert Koch identified the M. tuberculosis bacillus in the specimens and tissues of patients, and was able to infect animals which developed a similar disease. Even though the cause was known, the only treatments available for the next 50 years were fresh air (the sanatorium), cod liver oil and artificially puncturing the lung. These treatments probably had little or no effect on the final outcome of a disease that had a 50% 2-year mortality.

THE ANTIBIOTIC ERA

It was not until the mid-1940s that specific antibiotic therapy became available when Selman Waksman and Albert Schatz extracted a substance named streptomycin from a Streptomyces bacterium isolated from the soil. Shortly after this, a number of other antibiotics with activity against M. tuberculosis were described (see Table 1).

The UK played an important role in developing effective treatment regimens. When streptomycin was first available, there was not enough for all of the patients who needed it, so the Medical Research Council team who had been asked to investigate the new drug decided that it was fair and ethical to develop a randomized placebo control trial of the new treatment. This was the first trial of this type ever performed, and the importance of its results made it the standard way of testing new drugs throughout the world. What the study revealed was that the patients receiving streptomycin fared much better initially, but at the end of 5 years the same number of patients had died. This was because the organisms infecting the streptomycin-treated patients had developed resistance. Fortunately, other drugs had been developed and could be combined with streptomycin; of these the most important was isoniazid. As new drugs became available, the Medical Research Council tuberculosis unit and their counterparts in the US Public Health Service trialled new agents in various combinations, incorporating rifampicin...
in the 1960s and, in the 1970s, rediscovering the value of pyrazinamide, which had previously been rejected due to toxicity. Each of the new regimens was shorter so that, by the time that the regimens that remains the international standard was finalized, treatment duration had reduced from 2 years to 6 months.

In most European and North American countries, the combination of effective treatment, rising living standards and BCG vaccination resulted in the number of cases of tuberculosis falling to very low levels. In resource-poor countries, however, the number of cases did not fall in the same way. Also, for many countries in sub-Saharan Africa, the emergence of human immunodeficiency virus (HIV) was a catastrophe as the virus rendered the patients especially vulnerable to tuberculosis falling to very low levels. In resource-poor countries, the resistance to rifampicin and isoniazid because of the critical importance of these two drugs in bringing about a cure. The remaining drugs do not have the same ability to kill the pathogen and treatment may need to be prolonged. Consequently, the outcome of MDR-TB is much worse than that of susceptible disease. In some countries with ineffective tuberculosis control programmes, MDR-TB can make up a quarter of all new cases.

More recently, we have seen outbreaks of infection with M. tuberculosis that is resistant not only to rifampicin and isoniazid, but also to second-line antibiotics such as kanamycin and members of the quinolone family. These strains are usually called extensively drug-resistant TB (XDR-TB).

NEW TOOLS, NEW CHALLENGES
Thus, the growing burden of TB worldwide and the increasing risk of infection by drug-resistant strains make it imperative that we develop new tools to defeat TB. Among these tools, new drugs are crucial. At the turn of the millennium, a new approach was forged and a public–private partnership, the Global Alliance for TB Drug Development, was founded. The aim of this group is to develop new treatment regimens that are significantly shorter than the current 6 months. The first stage of this process was the formation of a consortium to evaluate moxifloxacin, a fluoroquinolone antibiotic, in a regimen capable of treating TB in only 4 months. Some pharmaceutical companies have been encouraged to re-enter TB drug discovery and development. Together with pharmaceutical companies, the Global Alliance’s aim is to develop a regimen that will take only 2 months to treat TB.

As was the case at the start of the antibiotic era for TB, UK scientists are playing an important role in developing and testing new drugs. The RE МохTB consortium is led by researchers from the University of St Andrews, University College London and the MRC Clinical Trials Unit. The trial is funded by the Global Alliance for TB Drug Development, the European Developing Country Clinical Trials Partnership (EDCTP) and the Medical Research Council. It is taking place in more than 18 states throughout the world and aims to recruit 1,900 patients before the end of 2011. As the first regulatory trial, it is setting the standard for future studies.

More importantly, a wider group of UK scientists have come together to form TB EU19 – Tuberculosis Drug Discovery UK (www.tbd-uk.org.uk). This group, which includes medicinal chemists, microbiologists and clinicians, aims to strengthen the UK research portfolio in discovery and development of new anti-TB drugs. It has already had considerable success in generating new research funding and is currently investigating several promising new compounds.

TB continues to be a major threat to human health, and we declared victory prematurely. Although there is much to do, the essential components of effective collaborative groups are now in place and there is now hope that, if we persevere, we will be able to defeat this disease. UK scientists are at the forefront of efforts to conquer the threat.

STEPHEN GILLESPIE is the Sir James Black Professor of Medicine in the Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9TF (e-mail stg@st-andrews.ac.uk)

FURTHER READING
How the mushroom got its spots and other stories

This article is based on the SGM Peter Wildy Prize Lecture, delivered by Sue Assinder at the SGM Autumn 2010 Conference in Nottingham on 8 September.

THE IDEA THAT SCIENTISTS have a responsibility to communicate their work to the public is not new. However, talking to the public about science used to be an activity conducted only by a few committed eccentrics under the radar of the academic ‘day job’. It is now a legitimate enterprise supported by a framework of national and international science centres and festivals, and is recognized by funding bodies and university management alike. The relationship between scientists and the public has also changed. When I first became involved around 15 years ago, science communication was working to a ‘deficit model’ of increasing public understanding of science by imparting information. Today, the focus is on engaging the public as active participants through dialogue and discussion.

The current movement in science communication can be attributed to the publication in 1985 of a report entitled The Public Understanding of Science, which detailed the outcomes of a Royal Society working group chaired by Sir Walter Bodmer. The Bodmer Report told Britain’s scientists that they had a duty to communicate with the public. This legitimized popularizing science and also helped to mobilize the resources to move things forward (although it did have the effect of saddling science communication for several years with the unfortunate acronym PUS). A key step was the establishment of the organization COPUS (Committee on the Public Understanding of Science) by the Royal Society, the British Association for the Advancement of Science and the Royal Institution. The aim of COPUS was to interpret scientific advances and make them more accessible to non-scientists, and it awarded grants to scientists wishing to run events for public audiences. Following this lead, the UK research councils also began to establish their own PUS grant schemes, many of them targeted at younger scientists. It was one such scheme set up by the Biotechnology and Biological Sciences Research Council (BBSRC) that proved to be a turning point in my career.

I was fortunate in 1995 to win the first BBSRC Science Communicator Award with a project aimed at producing a teaching resource pack about DNA. Until that point, my experience of science communication had been limited to extracting DNA from onions for school children in the frenetic environment of National Science Week university open days. Although fun to do, I was frustrated by the limitations of the ‘hit and run’ interaction with the audience and saw the BBSRC competition as an opportunity to develop a more structured approach. I chose to target the pack at primary school teachers, mainly because I wanted to work with an audience for whom it had not yet become ‘uncool’ to be enthusiastic.

It is important to appreciate the context in which this project was set. Today, thanks to the ‘CSI effect’, DNA is part of everyday vocabulary, used frequently on TV and radio without feeling the need for any explanation. However, in 1995, few people outside of a lab had heard of DNA, and the seminal text from which the public was drawing its knowledge was Jurassic Park. With the help of John Schollar from the National Centre for Biotechnology Education, I developed a resource based on the concept of DNA as a ‘recipe for life’. This aimed to give a basic understanding of the role of DNA within human cells and an appreciation that it is the uniqueness of their DNA ‘recipes’ that makes individuals different.

It is important to appreciate the context in which this project was set. Today, thanks to the ‘CSI effect’, DNA is part of everyday vocabulary, used frequently on TV and radio without feeling the need for any explanation. However, in 1995, few people outside of a lab had heard of DNA, and the seminal text from which the public was drawing its knowledge was Jurassic Park. With the help of John Schollar from the National Centre for Biotechnology Education, I developed a resource based on the concept of DNA as a ‘recipe for life’. This aimed to give a basic understanding of the role of DNA within human cells and an appreciation that it is the uniqueness of their DNA ‘recipes’ that makes individuals different.

Discovering DNA: The Recipe for Life contains seven curriculum-linked activities and was written for delivery as a 2-hour workshop (Fig. 1). Beginning with the hook of a chocolate swiss roll, it takes the audience from the concept of a recipe for a cake through to the ‘recipe’ for a human, using games, simple experiments, puzzles and model-making. The biggest challenge was to make the link between the base sequence and phenotype, an example of the dilemma often faced by science communicators of how to simplify without misleading. I tackled this by setting an activity in ‘Cartoon Land’ where the rules are straightforward and each feature of a face is encoded by a recipe of just five bases. Happy with this simple context, the children readily set about with scissors, glue and crayons to construct their own cartoon character and record its DNA recipe. From this foundation, we could then discuss the greater complexity of the human ‘recipe’ (Fig. 2).

Whilst I was serving cake and slicing onions, the agenda for science communication was changing, culminating in the publication of the House of Lords’ ‘Science and Society’ report in 2000. Published at a time when public confidence in scientists was still reeling from the BSE crisis, the report noted that the attitude of British scientists had changed in favour of public outreach activities, but that ‘the crisis of trust has produced a new mood for dialogue’. The PUS movement that had evolved from the Bodmer report was felt to be too focussed on what the public did...
not know, with the implication that scientists just needed to provide sufficient information to overcome a ‘knowledge deficit’. As a result of the House of Lords Report, ‘public understanding’ evolved into ‘public engagement’, and the interaction between scientists and the public started to be seen as a 2-way process. Some scientists took the route of dialogue and debate, with activities such as consultations, citizen’s juries, focus groups and science cafés around issues of public concern. Others concentrated on finding different ways of working with the public that were less dominated by the ‘expert in the white coat’ and more focussed on interacting and listening.

The ‘Fungal Village’ was one such project. I was approached by Mike Milker from the British Trust for Conservation Volunteers to run some educational activities at a community event in Heddon-on-the-Wall in Northumberland. As Education Officer at that time of the British Mycological Society (BMS), I had been working with Gordon Rutter and other BMS members to collate a teaching resource about fungi, so this was an opportunity to try out some ideas. We chose activities to get across three messages: fungi occur in vast numbers and in all shapes and sizes, they play a vital ecological role and they can be exploited for outreach work have found a second life as teaching aids for undergraduates. Above all, I have had a huge amount of fun. What is the role of science communicators looking forward? Although the deficit model has fallen out of favour, unless scientists can explain science in a way that the non-expert can understand, there can be no dialogue. The science that the villagers of Heddon learnt from us was balanced by what we learnt from them about how we should communicate that science.

A recent development has been the establishment of Beacons for Public Engagement, a £9.2m initiative funded by the UK higher education funding councils, Research Councils UK and the Wellcome Trust, to establish a co-ordinated approach to recognizing, rewarding and building capacity for public engagement. Despite the legitimacy conferred by such high-profile initiatives, many scientists still perceive barriers to their getting involved in science communication, not least the need to maximize performance in the Research Assessment Exercise. There is no simple response to this other than to point out the benefits. My enthusiasm for communicating science has taken me from primary schools and draughty village halls to the Royal Show and the House of Lords. It has affected whole aspects of my life – I can no longer cut up an onion without wanting to extract its DNA, nor can I think of body glitter as anything other than a model for the cold virus in mucus. My involvement has undoubtedly made me a more effective teacher, and activities developed for my outreach work have found a second life as teaching aids for undergraduates. Above all, I have had a huge amount of fun.

What is the role of science communicators looking forward? Although the deficit model has fallen out of favour, unless scientists can explain science in a way that the non-expert can understand, there can be no dialogue. Scientists must also recognize that, with the rise of the internet and greater media coverage of science, the public begins the dialogue from a different starting point. It is only by understanding our audience and by getting the right balance between transmission of information and participation that we can provide the public with the facts that equip them to engage effectively in dialogue over scientific issues.

SUE ASSINDER is Director of Education, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA (email s.assinder@liverpool.ac.uk)
Cholera: an epidemic in Haiti

On 12 January 2010 Haiti was shaken by an earthquake of 7.0 Mw, with the epicentre located 16 miles west of the country’s capital, Port-au-Prince. More than 3 million people were estimated to be affected by the quake with half a million dead or injured.

More than one year on, the country is slowly putting itself back together. However, the enemy is now disease. Due to poor sanitation and a lack of clean water, an outbreak of cholera was reported in October 2010. The outbreak began in the Artibonite region in the north of Haiti; the source was suspected to be the Artibonite river where people had been taking their drinking water. Reports from the United Nations suggest that the epidemic could affect 650,000 people, having already killed at least 2,800 and infecting more than 130,000.

Cholera is a diarrhoeal disease caused by the ingestion of food or water contaminated with the parasite V. cholerae. The bacterium releases a toxin which causes rapid fluid loss from the body into the digestive tract, which leads to dehydration and ultimately death by diarrhoea.

COMING SOON…

… a 12-page fact file from the SGM, all about cholera, charting the history of the disease and investigating the causes, symptoms, diagnosis, treatment and prevention of the disease, as well as vaccine development and community education strategies. The resource, ‘Cholera: Death by Diarrhoea’ is targeted at the post-16 age group and will be made available to SGM school members.

Don’t forget we have a wide range of resources which can be used across the key stages. These can be viewed at www.microbiologyonline.org.uk/teachers/resources.
A student browses SGM educational materials on the stand. V. Symington

ASE Reading 2011

Travel broadens the mind but opens the bowels (P.D. Weisby, 2005)

THIS YEAR’S ASE (Association for Science Education) Conference was held at the University of Reading from 5 to 8 January. The SGM shared a stand with the Association of British Pharmaceutical Industries (ABPI) and the Microbiology in Schools Advisory Committee (MISAC), and also took part in a day of talks sponsored by the NUCLEUS group.

NUCLEUS is a group of learned societies who are involved with promoting bioscience education; amongst other things, members of NUCLEUS get together to sponsor a day at the ASE entitled Biology in the Real World. Eminent speakers from the societies’ disciplines give talks which aim to bring the biology curriculum to life while maintaining a link to the biology specifications. This year the talk sponsored by the SGM was given by Professor Martin Adams (University of Surrey), entitled Prevent travellers’ diarrhoea – boil it, peel it, cook it or forget it!

Martin began by giving the definition of a loose stool as ‘one which forms the shape of the container into which it is deposited’ – a delightful thought at 9.30am on a Friday morning! He then gave a thorough account of the countries to avoid in terms of incidence of diarrhoeal disease and the microbial culprits of the discomfort. We were introduced to the different virotypes of *Escherichia coli*, the most common cause of travellers’ diarrhoea (TD), including: enterotoxigenic (ETEC), enteroaggregative (EAggEC), enterohemorrhagic (EHEC) and enteroinvasive (EIEC). *E. coli* along with a multitude of other ‘nasties’ with which we might have contact should we dare venture on holiday! He was keen to point out that the true incidence of TD is unknown due to many cases that go untested and unreported, the majority ‘passing’ quickly without real cause for concern.

Martin delivered his talk in an entertaining and engaging manner, making the audience aware of faecal accidents, of ways to contract *Salmonella* from your terrapin, and that infection may feel like ‘the world dropping out of your bottom; not vice versa!’

Elsewhere at ASE, the SGM stand was a raging success with resources flying off the shelves. Manning the stand, James Redfern, Yvonne Taylor, Laura Udalas, Daniel Burdass and I had some really interesting discussions with conference delegates who we hope are all going back to their schools ready to take microbiology by the horns! I also gave a short talk at the Open Conference Session, introducing delegates to SGM education materials, which was gladly received by the teachers in attendance.

We are very grateful to Martin for his contribution to our success at this year’s ASE. He has kindly helped us to update an article which was published in Microbiology Today in August 2010 and this is now being distributed to all School Corporate Members.

VICKI SYMINGTON

Education and Outreach Administrator

Pursuing and advancing knowledge is a global venture, with people from many countries interacting and collaborating with one another. Researchers are now likely to spend part of their career in a foreign country. Karen McGregor offers some sound advice and insight from her own experiences.

Microbiology – an international career

MOVING TO A NEW COUNTRY can be an exciting and rewarding experience, expanding both professional and personal horizons. However, it is not always easy to uproot yourself from familiar surroundings (see Table below). While it can seem daunting, good preparation and planning can help the move go as smoothly as possible and ensure its success.

PLANNING THE MOVE

When applying for advertised positions, it is helpful to find out about the application process in that country and how it differs from your own. (e.g. how long and detailed the CV should be.)

There are a few things to consider/ask when looking at a potential post:

- Does it include a relocation package (sadly, these aren’t as common, or generous, as they used to be)?
- Will someone help you to find accommodation?
- Is there an induction course for international researchers?
- Is there a mentor scheme?
- Is there a central office that can deal with queries about visas (and help you with the application process)?

Don’t underestimate the time (and cost) of organizing a visa, and read carefully any instructions on paperwork you need to have with you when you enter the country for the first time – border control personnel are not generally known for their understanding and compassionate nature.

Gradline aims to inform and entertain members in the early stages of their career in microbiology.

If you have any news or stories, or would like to see any topics featured, contact careers@sgm.ac.uk
You should expect the unexpected (and have money put aside for it). When I moved to the UK, I had carefully budgeted what I would spend on accommodation and duly signed up for a lovely little flat. Then I found out about council tax (in Australia the landlord, not the tenant, pays the rates/rent on rental properties). And what do you mean you have to pay for having a television!

Get as much information as you can to make an informed choice. Ask people who have previously moved country about their experiences and recommendations. It is a good idea to find out about the research landscape in the country you are considering moving to, and also to check out the lab you will be working in. Ask your potential employer for contact details of another early-career researcher who has moved to that institute – ideally from your country – and then find out from them about the general working conditions and social life.

THE MOVE ITSELF

Try to find out (and do) as much as possible before you make the move. Bear in mind that moving will cost more than you think and you’ll probably be paid in arrears (most likely at the end of the month). Until pay day, you’ll have to cover day-to-day expenses as well as a variety of deposits and/or installation fees, so you’ll need to have enough accessible funds in your new location.

Plan a budget for particular items. Find out all you can to build a realistic picture of what your monthly expenses will be (for utilities, tax, pension, insurance, transport, food) and then work out what the maximum is that you are willing to spend on accommodation (leaving you enough left over to socialize, go on holiday, etc.). Other things (but not everything) that you will need to think about include:

- healthcare (registration requirements, any entitlements to reduced-cost medical treatment);
- pensions (is it worth transferring any benefits from existing pension schemes?);
- driving (road rules, insurance requirements) / public transport (timetable, long-term passes, any discounts);
- politics and voting;
- family issues (education, childcare, benefits, maternity leave entitlements).

GETTING THE MOST OUT OF THE MOVE

First, don’t be afraid to ask questions from those around you – many of your colleagues may well have moved at some stage and will understand how daunting it is. Most importantly, get involved. This can include joining the research staff association, offering to help run the departmental seminar program, or just eating your lunch with others in the common/staff room rather than at your desk. Engaging socially is important for most people’s general sanity and happiness.

In some places this will be easy (some departments will already have an active programme of social activities), in others, it will be more challenging (social activities may not occur regularly or it can be hard to garner enthusiasm in a “too busy” culture). If you fall into the latter, don’t despair: there should be opportunities to join a group such as an international society.

Don’t forget to take advantage of any career development opportunities/training that might be on offer. And make time to contact friends and family at home.

THINKING BEYOND THE MOVE

It is true of any new job, but particularly for an international move, that you should start thinking at an early stage about what you might do at the end of the contract. If your intention is to return to your country of origin, it is a good idea to have a return strategy. Keep up to date with research developments and funding opportunities, and stay in touch with researchers you know in your home country.

Attending conferences is good for face-to-face networking with researchers from home and abroad.

KAREN MCGREGOR

Membership Services and Grants Administrator

46% of UK doctoral graduates are from overseas. Even if you are not thinking of going abroad yourself, maybe after reading this article you’ll be more inclined to go out of your way to introduce yourself to the new foreigners in your department, or even invite them to go for coffee.

Dr Claire McNulty from the British Council describes her own experience of international research as well as an important resource freely available to researchers considering a move within Europe.

**TEN YEARS AGO, when I arrived in the Netherlands as a young postdoc, I was naturally a bit nervous. It was the first step of my research career and beyond the stereotypes of bikes, cheese and tulips, I was not really sure what to expect. I grew to love Holland and my life as a researcher there, but it wasn’t easy. It was hard at first to fit into the research hierarchies especially as, having been through the UK system, I was younger than many PhD researchers, who are classified as members of staff, not students in the Dutch system. Issues like understanding the tax system and finding affordable accommodation seemed much more complicated. For example, I only found out about a tax rule which allowed skilled foreigners to pay a lower rate of tax when it was too late to apply.

Living and working in the Netherlands was an immensely valuable experience for me, both professionally and personally (I started my family there), but there were times when I would have appreciated some targeted advice about how to get by as a researcher. Now, through my work in the British Council’s Science team I know that advice does exist, in the form of the EURAXESS initiative.

The British Council is the UK partner organization for the EURAXESS project and we run the EURAXESS-UK portal (www.euraxess.org.uk), because we believe in the importance of sharing knowledge and ideas across national boundaries. EURAXESS is a Europe-wide project (spanning most European countries, including non-member states such as Turkey and Israel) that tries to make it easier for researchers to move around from country to country; this includes support for international researchers moving to the UK as well as UK researchers moving across Europe. It has four key strands: Jobs, Services, Rights and Links (see diagram below).**
A taste of international research

PROFILE – ARWYN EDWARDS
Lecturer in Biology (Witch Medieval Delivery), Institute of Biological, Environmental and Rural Sciences, Aberystwyth University

My research interest is the structure and function of microbial communities on, in and underneath glaciers. I’m most fascinated by cyanobacteria that, despite average temperatures of <1°C, possess microbial activity rates similar to temperate soils. For obvious reasons, travelling for fieldwork is obligatory for UK-based glacier microbiologists and I’ve previously spent a few summers 600 miles from the North Pole at the NERC Arctic Research Station on Svalbard. It was during these trips that I met Dr Birgit Sattler; a leading expert in polar microbiology based at the Institute of Ecology in Innsbruck, Austria. What began with discussions over whisky on the rocks (glacial ice, of course) on Svalbard, progressed to regular email contact and working on a manuscript together. I mentioned the SGM President’s Fund scheme and Birgit was happy to welcome me to Innsbruck. She had just started a project looking at a glacier in the Tyrolean Alps based at Innsbruck University’s Alpine Research Centre in Obergurgl, and this was a great opportunity for me to expand my research interests from Arctic to Alpine environments.

I made the trip to Austria in September 2010. There was good weather for our main field campaign and the snowline stayed high enough for us to find plenty of cyanobacteria to sample most days. A particular highlight was the day that started with a 3,200 m cable car ride followed by a good old scramble to get to an unfrozen glacier; the sun was shining, the view was breathtaking, the sampling was good and we even managed to get a lift down in a SnowCat.

There are, of course, challenges associated with this type of fieldwork, starting with developing running ways of defeating maximum baggage allowances to get crampons, ice axes, sample tubes, etc., on the plane from Wales to Austria! The physicality of getting to sampling locations, and back again, means that I no longer take my knees for granted.

This visit, and the grant provided by SGM, has been invaluable for my career. Even before I’d set foot in Austria, the grant gave me something concrete to present to job interview panels regarding my research plans. I’m already planning a return visit next spring to write up the outcomes of this trip for publication and to discuss future collaborations. In the meantime, one of Dr Sattler’s students has received funding to visit my laboratory to conduct molecular analyses of bacterial communities in snow and ice, further strengthening Aberystwyth-Innsbruck links.

I’m very grateful to the SGM for this great opportunity and would recommend other young scientists to apply. There is a lot you can gain and give by visiting a laboratory abroad, but very little to lose. Even if the microbes you study are contented in the incubator at the end of your bench, international work experience adds considerable value to your career profile and perspective as a scientist. International collaborations are the livelihood of cutting-edge science; if we in the UK aspire to do world-class science, we must engage with science across the world. That level of engagement cannot be obtained by email, although an email is often the start of something more meaningful.

PROFILE – NEELTJE VAN DOREMALEN
PhD student at Imperial College London

I have been fortunate enough to experience international research in a number of settings. During my degree, in The Netherlands, I did a 6-month internship at King’s College London and enjoyed the research and city thoroughly. When it came to finding a PhD project, I was keen to return to the UK.

My PhD project, supervised by Prof. Wendy Barclay, is looking at mutations in the influenza virus haemagglutinin protein and their relationship to human-to-human transmission of the virus. I wanted to look at the binding of my viruses to non-ciliated cells in a human airway epithelial system, but we do not have this system in the lab. Due to Prof. Barclay’s long-standing collaboration with Prof. Ray Pickles, University of Manchester, I was able to visit Prof. Pickles’ lab in May–June 2010 to undertake these experiments. As some lab members had previously travelled between the two labs, preparing for the visit was made easier as I could learn from their experiences. The most stressful part was making sure the viruses were ready on time and organizing their transport. As I was only there for 4 weeks, every experiment had to be planned very carefully to ensure I got the most out of my visit.

The visit itself was amazing. I really enjoyed working with Prof. Pickles because his expertise is in a different area to mine, he looked at experiments from a different perspective and this was very refreshing. I have already presented the results from my visit at a conference in Hong Kong.

I have enjoyed living in different countries and working with people from all over the world. I believe having worked in other countries has been very beneficial for my CV as it shows potential employers that I am proactive in my career. I was lucky in organizing my visit to the USA as there was already a collaboration in place. But if you think you have an interesting project and a good reason to work in another laboratory, I would absolutely recommend working abroad to you.

FURTHER INFORMATION

FINDING A JOB

Academic jobs EU – academicjobs.eu
Euro Science jobs – eurosciencejobs.com/jobs/biology
USA/Canada – http://jobs.phds.org/

FUNDING OPPORTUNITIES

ERC (European Research Council) – erc.europa.eu
Marie Curie Actions – cordis.europa.eu/fp7/people/home_en.html
SISTER – www.britishcouncil.org/science-sister.htm
AccessEU – www.accesssf.eu

INFORMATION ON THE RESEARCH LANDSCAPE AND SUPPORT FOR RESEARCHERS

LERU (League of European Research Universities) – www.leru.org
Eurodoc – www.eurodoc.net

INFORMATION ON FURTHER WORKSHOP OPPORTUNITIES

PDF/Manchester flyer 0311.pdf
PDF/Manchester flyer 0312.pdf
PDF/Manchester flyer 0313.pdf

MISCONCEPTIONS

North Carolina, USA, and with funding from the SGM President’s Fund scheme, I was able to visit Prof. Pickles’ lab in May–June 2010 to undertake these experiments. As some lab members had previously travelled between the two labs, preparing for the visit was made easier as I could learn from their experiences. The most stressful part was making sure the viruses were ready on time and organizing their transport. As I was only there for 4 weeks, every experiment had to be planned very carefully to ensure I got the most out of my visit.

The visit itself was amazing. I really enjoyed working with Prof. Pickles because his expertise is in a different area to mine, he looked at experiments from a different perspective and this was very refreshing. I have already presented the results from my visit at a conference in Hong Kong.

I have enjoyed living in different countries and working with people from all over the world. I believe having worked in other countries has been very beneficial for my CV as it shows potential employers that I am proactive in my career. I was lucky in organizing my visit to the USA as there was already a collaboration in place. But if you think you have an interesting project and a good reason to work in another laboratory, I would absolutely recommend working abroad to you.

Sense About Science media workshop

Sense About Science will be holding a **Standing up for Science** media workshop at the University of Manchester on Friday 11 March. This full-day event is free and designed for early-career researchers in all sciences. (PhD students post-doctoral researchers and equivalent equivalent in first job, please find further information at www.senseaboutscience.org/uk/pdf/Manchester_flyer_0311.pdf). These workshops are very popular and places are limited. To apply, send a CV and covering letter explaining your reasons for applying and stating any affiliations you hold to Rose Wu (rwu@senseaboutscience.org). The closing date for applications is Monday 28 February.

Nadja van Doremalen
North Carolina State University, USA.
The Manchester Science Festival (MSF) attracts over 100,000 visitors during its week-long run. There were more than 200 events at the 2010 festival which took place in several venues across the city. Split over four themed areas: ‘Manchesterity’, ‘Mind & body’, ‘Our planet & beyond’ and ‘Bright ideas’, there was plenty to choose from, including walks, talks, workshops, shows, comedy, cake, exhibitions and busking – all with a science flavour. Vicki Symington and Jo Verran present their views of the event.

IF YOU WERE WANDERING around the Power Hall in Manchester’s Museum of Science and Industry (MOSI) during Halloween weekend last year you might have been surprised to find the SGM staff blowing up balloons using the ‘power of yeast!’ Not put off being surrounded by locomotive engines, more than 400 children took part in our activity!

GETTING UP AND RUNNING With only a few minor teething problems – where to park the van being foremost – Dariel, Laura, Yvonne, James and I arrived armed with our fancy new water bath and plasma screen TV, not to mention our new yeast resource (with at-home science experiments), ‘bad bug’ bookmarks and ‘good bug’ bendy rulers! We were blowing up balloons using dried yeast, sugar and warm water, then measuring their circumference, carefully plotting the results on our graph. The biggest balloon of the weekend had a 31 cm circumference after 45 minutes inflating time!

FEEDBACK As SGM had never been to MSF, we didn’t know what to expect. There was a steady flow of people across the weekend and, because the activities were not densely packed into one hall, people were very interested in what was going on and why we were there … particularly in amongst the trains!

Many of the children and adults were unaware that yeast was a living organism, let alone a microbe; in particular, many had assumed that dried yeast contained a chemical agent that helped bread to rise. There was genuine amazement on the faces of some of the young people! Questions varied massively from ‘would the balloon explode if you just left it for hours and hours?’ to in-depth queries as to the different types of yeast which can be used in breadmaking and brewing to obtain the perfect rise and alcohol content, respectively!

There was a good response to our new resource, a cartoon all about yeast, with accompanying experiments to do at home, with both teachers and parents taking copies. This resource has now been distributed to all school members who can request multiple copies for class use. Non-members can request single copies via www.microbiologyonline.org.uk.

Children (and adults) of all ages were keen to get involved and try the experiment to see whose balloon would be the biggest. While this activity has been done before at previous SGM events, it remains an old favourite as it clearly demonstrates the power of microbes using simple, safe, household ingredients. We plan on wheeling this one out again for some of the science festivals we are attending in the coming year if you are interested in seeing first hand what it’s all about.

VICKI SYMINGTON Education and Outreach Administrator
It was certainly not a problem consuming the victuals at the Teawitter event, which was set up by a group of social networkers, enabling them to get together in person on a Sunday afternoon every few months, along with tea and cakes. This time, there was a science theme — even the amazing cakes played along, with a cupcake periodic table stealing the show. I was asked to talk about microbiology, tea and cakes … surprisingly easy actually, once I had time to think up possible links. I used Vicki’s Yeast Power demonstration (yeast plus sugar plus warm water plus balloon) as a timer for the event (when the balloon stood up, it was time to finish), and described the importance of microbes in tea, coffee and chocolate fermentation, used creative cakes to illustrate food-poisoning micro-organisms (see MT Aug 2010, p. 190), and finished with a reminder about tooth decay (which no-one needed!) between additional cake-eating, there was also a demonstration of making ice cream with liquid nitrogen (under appropriate safety conditions) and a talk on mathematical modelling of crowd management, which was almost essential when the audience milled around the SGM goodies (and the cakes).

World AIDS Day on 1 December marked the anniversary of the launch of the SGM-sponsored community ‘respect + protect’ quilt. The quilt, featured in MT Feb 2009 (p. 55) now needs a permanent home — if you have any suggestions, please contact Daniel Burdaas (djburdass@sgm.ac.uk). We marked the occasion with another bookclub meeting, this time using Dracula by Bram Stoker. Previous public engagement activities had linked the Twilight vampire novels with microbiology (see MT Nov 2010, p. 248), so we thought we would go back to the first vampire blockbuster. We were surprised at what a good read it was, full of reference to contemporary technological advances (of the late 1800s), feminism (pre-suffragettes) and of course the sensuality of vampirism. It must have been really shocking when first published. Plenty of science too — blood transfusions and symptoms reminiscent of rashes, consumption, syphilis, etc. We distributed SGM’s HIV information to the participants. I have used loads of SGM’s resources at the Teawitter event, including some of the cupcakes, periodic table, of the cupcake, with some of the the cakes, and a rainbow sponge cake.}

Top: A meeting of the Dracula bookclub.
Right: JO VERRAN SGM Education and Public Affairs Officer

The Bad Bugs bookclub meeting at MSF. V. Springston

SCIENCE and THE PARLIAMENT 2010
SCIENCE and the Parliament is the biggest annual gathering of the science and political communities in Scotland. It is organized by the Royal Society of Chemistry, in association with over 30 science and engineering societies and organizations, and provides a forum to focus on the best of — and also the priorities for science in Scotland.
The theme of this year’s event was focused on looking forward to the Scottish Parliamentary Elections due in May 2011 and identifying issues and policies that the scientific community would like to see, incorporated into the Election Manifestos of the major political parties.
The President of the RSC, Professor David Phillips, chaired the event. Other distinguished speakers included Iain Gray, Leader of the Labour Party in the Scottish Parliament, as well as Members of the Scottish Parliament from all the major political parties. Other major contributors to the proceedings included Professor Anne Glover, Chief Scientific Adviser to the Scottish Government, Professor Paul Hagan, Director of Research and Innovation, Scottish Funding Council; and Dr Oleagh Loughran, Life Science Priority Industry Team, Scottish Enterprise.

Breakout sessions followed the presentations, which addressed four policy areas: Education, Energy and the Environment, Enterprise, and Health.

A reception and exhibition followed the day’s proceedings. The SGM stand focussed on reducing the spread of infection. The display was both interactive and informative, and highlighted the importance of good hand hygiene in reducing the microbial load on the skin and how this can help to prevent the spread of infections such as the common cold and influenza.

Flyers on hand hygiene, MRSA and Clostridium difficile, as well as hand-soaps, were available on the stand for the delegates to take away.

The day concluded with a debate on science in the chamber of the Scottish Parliament. Bill Wilson (West of Scotland) (Scottish National Party) submitted the following motion for discussion:

That the Parliament welcomes the Science and the Parliament event that is scheduled to be held on 10 November 2010 in Our Dynamic Earth and organized by the Royal Society of Chemistry in association with Scotland’s leading science organizations; notes the contribution of Scotland’s scientists to economic, environmental and social development through the University of the West of Scotland and James Watt College and companies such as BASF and Life Technologies in Paisley; considers that Scotland is a world leader in many scientific disciplines, and recognizes the need to foster an environment that enhances pupil and student participation in science, to sustain science research along with supporting greater industrial research and to assist in the practical application of world-leading research.

DAREL BURDAAS
Head of Education, Professional Affairs and Outreach
CLIMATE CHANGE was the hot topic that was under the spotlight when the SGM held its latest Microbiology Awareness Campaign parliamentary event at the House of Lords on 3 November 2010, hosted by Lord Soulsby of Swaffham Prior.

Members of the Lords and MPs met with leading experts working in the field of climate change. More than 100 invitees gathered on The Terrace at the House of Lords to hear a series of short presentations on microbes as climate engineers, and the influence of climate change on disease and microbial environmental processes.

We were delighted with the enthusiasm and interest that the audience showed for this hot topic. The talks were followed by a drinks reception, which provided an excellent networking opportunity for all the guests and the chance to view an exhibition from various organizations carrying out research in this hugely important area of microbiology.

After a short introductory speech from our host, Lord Soulsby of Swaffham Prior, Professor Hilary Lappin-Scott, SGM President, summarized the role and activities of the SGM and how the Society provides a common meeting ground for scientists working in research and in fields with applications in microbiology, including medicine, veterinary medicine, pharmaceuticals, numerous industries, agriculture, food, the environment and education.

Dr Dave Reay, University of Edinburgh, gave an overview of the role of microbes as climate engineers, the crucial role that they play in the carbon and nitrogen cycles, and how they are responsible for both using and producing greenhouse gases such as carbon dioxide and methane. Microbes can have positive and negative responses to temperature, making them an important component of climate change models. However, microbes live in diverse communities that interact with other organisms and the environment, making their impact difficult to predict. As he explained, ‘Microbes will continue as climate engineers long after humans have burned...’

The Society’s Microbiology Awareness Campaign was first launched in 2004, and continues to evolve and go from strength to strength. It was set up to promote the understanding of microbiology and the important role of microbiologists to parliamentarians, opinion-formers and policy-makers through a comprehensive framework of activities designed to bring together microbiologists and key stakeholders, including members of Parliament and the House of Lords.

IN THE HOUSE OF LORDS

CLIMATE CHANGE IS A BIG CONCERN, BUT WHAT ROLE DO MICROBES PLAY IN THIS GLOBAL CHALLENGE?
that final barrel of oil. Whether they help to avoid dangerous climate change in the 21st century or push us even faster towards it is dependent on just how well we understand them.

Professor Andrew Whitley, Centre for Ecology and Hydrology, explored the impact of climate change on soil biodiversity, while Dr Ian Joint, Plymouth Marine Laboratory, looked at the impact of climate change on marine microbes.

The presentations were brought to a close by Professor Steve Lindsay, London School of Hygiene and Tropical Medicine, who took a closer look at how climate change may affect the future risk of malaria and how climate change in the UK may increase the abundance of nuisance insects that will impact public health, tourism and the economy.

Professor Joanna Verran, SGM Education & Public Affairs Officer, chaired a wide range of presentations on public health, tourism and the economy.

Andrew Whiteley Centre for Ecology and Hydrology, delivering their presentation

Annexed to the website are details of the media pack for the event. This is the first ever event of its kind and highlights the huge potential of showcasing microbiology and its impact to the public.

ROTHAMSTED RESEARCH
Health Protection Agency
Plymouth Marine Laboratory
Centre for Ecology and Hydrology

ACKNOWLEDGEMENTS

The Society is extremely grateful to all the contributors who made this Microbiology Awareness Campaign event such a huge success, especially the speakers and exhibitors. Thanks are also due to Lord Soulsby of Swaffham Prior for hosting the event and for much useful advice.

FOLLOW-UP

A follow-up letter was then sent to all Peers, MPs, MSPs, AMs and MLAs, suggesting new ways that we can build bridges between parliamentarians and the microbiology community, and how we can provide key political opinion-formers and policy-makers with unbiased information on the role that microbes play in key issues. All parliamentarians also received briefings on climate change and HIV, and the 2011 SGM calendar; the pictures used throughout the calendar highlight important microbiological events throughout the year.

Following this, a question was asked by Lord Dylkes and recorded in Lords Hansard, 6 December 2010. Column WA19: ‘To ask Her Majesty’s Government what support they will give to the work of the Society for General Microbiology’ (HL4454) (see www.publications.parliament.uk/pa/ld201011/ldhansrd/text/101206w0001.htm). This shows that the continued work that the Society is doing in raising the profile of microbiology to key stakeholders is producing positive results.

DARIEL BURDASS
Head of Education, Professional Affairs and Outreach

HIV BRIEFING

From the SGM was issued to parliamentarians just before World AIDS Day on 1 December last year:

World AIDS Day aims to raise awareness, to tackle HIV prejudice and prevent the spread of the virus.

The 2-page A4 briefing on HIV provides a concise account of the virus, how infection progresses, testing and treatment, and explains the difference between HIV and AIDS. It includes the latest global statistics from the World Health Organization and UNAIDS.

The next topic to be covered in our briefings series is H1N1 (2009) Swine Flu and has been prepared in response to the resurgence of this infection.
Ceredigion dialect) illustrating the key role of fungi as decomposers of terrestrial plant debris. It also highlighted the importance of fungal conservation, an issue ignored in mainstream biodiversity conservation, but highly relevant here given our proximity to the Llanerchaeron lawn.

Whilst the National Eisteddfod has a long-established science pavilion, matters scientific have received relatively little attention at the Urdd Eisteddfod, but this year the Urdd were persuaded to host a science pavilion named ‘Y GwyddonLe’ (the science place). Some 17,000 people (mainly schoolchildren) visited the Eisteddfod on each of the 6 days, of whom about 2,000 (daily) visited GwyddonLe. As such, this new venture proved to be a great success, so we were very pleased to provide a showcase for microbiology at the event.

The star of the show was ‘Biosphere umbrellas’, now a famous microbe having appeared in ‘Planet Earth’ (episode 6). It is very similar in appearance to its better-studied relative Phusum polychromalum, but much easier to maintain. With small children, it was easier to ask them if they could see the river flowing (cytoplasmic shuttle streaming) and to watch the reversal of cytoplasmic flow at 60 second intervals. It was quite noticeable how almost every single boy (but never any of the girls) on seeing a microscope would fiddle with the focus knobs, stage-levers, etc., before even peering into the eyepieces. We quickly realized the need to hide the stage with a cloth, leaving only the eyepieces visible.

The feel o’ fungus exhibit, basically two Petri dish bags placed in a box containing either dried or wetted basidiocarps of the ear fungus Auricularia auricula-judae, was also very popular (scored highly on yuck factor), though of dubious scientific value. To illustrate the importance of fungi in nature,
60 61

...the empirical data. Contrary to his assertion, organic cultivation are comparable to the yields caused multiple deleterious effects, none of which has not developed any resistance to Cry1Ac protein. 2010) actually refers to the pink bollworm (not pest in parts of the Gujarat State in India (Bhargava, report of development of resistance by a cotton exposure to people working in brinjal fields. The Bt-brinjal into the Indian market, not to mention leading to a 133% average increase in yield and to be effectively controlled by the Bt-gene Cry1Ac to brinjal fruits. Both pests on brinjal were shown Qaim, 2007). The polyphagous American bollworm and no variety of brinjal is resistant. The brinjal Indian developers, supported by several public sector genetics, as exemplified by maize cannot be grown in the country kameswara Rao, 2005, 2006, 2008; Krishna diversity, as a major tool for securing sustain- kameswara Rao, 2009a, b, 2010). The points in Bhargava’s article depart widely from recorded data. Brinjal, developed in India by Mahoney (2004) (glimpse), Tamil Nadu Agricultural University (it varieties) and the University of Agricultural Sciences, Thiruvanathapuram (6 varieties), has been thoroughly tested for product efficacy and biosafety, with the data evaluated by two Expert Committees. On that basis, the Genetic Engineering Approval Committee (GEAC) recommended the commercial release of Bt-brinjal, and several surveys have affirmed the benefits of Brinjal (Kolady & Lesser, 2005, 2006; Krishna & Qim, 2007). In 2010, the Indian Minister for Environment and Forests (MoEF) suggested a indefinite moratorium on Brinjal, overriding the approval of the GEAC for its commercial release. The MoEF’s decision was not based on scientific or environmental concerns, but on political expediency (Kameswara Rao, 2010). The public consultation process conducted by the MoEF did not provide opportunity for the scientific community to express their opinion, as it was orchestrated in such a way as to support the MoEF’s decision (Kameswara Rao, 2010). The bioavailability data for the Indian Brinjal were not provided by Monomanto (Bhargava, 2010), but by the Indian developers, supported by several public sector institutions (Chaudhary & Guz, 2010; Kameswara Rao, 2010). The brinjal shoot and fruit borer (SFB) lists as being serious pests. Morphologically and no variety of brinjal is resistant. The brinjal farmers suffer 50-70% losses of marketable yield. Integrated pest management and biotechnological have not been successful in controlling SFB (Krishna & Qim, 2007). The polyphagous American bollworm (Heliothis armigera) also causes significant damage to brinjal fruits. Both pests on brinjal were shown to be effectively controlled by the Bt-gene Cry1Ac leading to a 133% average increase in yield and 77% reduction in pesticide application (Chaudhary & Guz, 2009), very sound reasons for introducing Bt-brinjal into the Indian market, not to mention lowering pest management and chemical exposure to people working in brinjal fields. The report of review of resistance from a cotton pest in India (Bhargava, 2010) actually refers to the pink bollworm (not targeted by Cry1Ac) and not the American, which has been taken to Cry1Ac protein. Bhargava (2010) also contends that GMOs can cause multiple deleterious effects, none of which has been substantiated by any credible scientific evidence. Bhargava’s assertion that the yields from organic cultivation are comparable to the yields obtained using Bt plants (Bhargava, 2010) do not fit the empirical data. Contrary to his assertion, the excellent performance of Bt-cotton has made India the second largest exporter of cotton (Chaudhary & Guz, 2010). Bhargava insists that the GEAC should have 25 tests done on Bt-brinjal. The GEAC’s Expert Committee critically reviewed these 25 tests in 2009 and considered only five of them relevant to the Bt-brinjal issue, which had already been conducted. Bhargava later raised the bar to 30 tests (Bhargava, 2010). Note that proposed safety tests appear to have anything to do with assuring the safety of brinjal. India is not the origin of brinjal, but is the centre of its diversity and, except as the agents of activists, there is no reason why a genetically engineered crop cannot be grown in the country that is the centre of its origin or diversity, as exemplified by maize in Mexico. Bhargava (2010) objects to the presence of antibiotic resistance gene markers in Bt-brinjal. These markers pose no threat (Ramessar et al., 2007), the European Food Safety Authority concluded that the lateral transfer of antibiotic marker genes to bacteria is unlikely and has not been demonstrated either in the laboratory or in nature, where they are abundantly present in all environments. Moreover, dozens of scientif- ic societies, including the American Society for Microbiology, have clearly endorsed the safety of GM crops. The antibiotic resistance genes as marker genes in transgenic crop development. There has been no evidence of gene flow between brinjal or Solanum (Kameswara Rao, 2010). Farmers have grown these crops in neighbouring fields for centuries without a reduction in quality. If there were gene flow in brinjal, it would also happen with organic brinjal, affecting the Bt-brinjal crop in the neighbouring fields. People certainly have a right to know what they are eating, as emphasized by Bhargava. He contends that 90% of UN member countries have strict laws or do not permit transgenic crops for human consump- tion; that is not correct. Labelling them as ‘outside of the norm’ as in the UK, is intended to exploit a market opportunity by demonising transgenic foods. More than 350 million Americans have been safely con- suming transgenic foods for more than 14 years, constituting the largest human experiment on the safety of genetically engineered foods. Also, Bhargava’s fears about the enhanced toxicity of Bt-brinjal are scientifically unfounded. GM foods now have a long history of safe consumption and there is no evidence of any transgenic foods bring more toxic than in non- transgenic counterpart. Further- more, transgenic crop have not been projected as the only way to meet food requirements in the coming years. They are regarded as a major tool for securing sustain- able food production in the coming years. Transgenic help in preventing the current enor- mous pre-harvest losses, enhance- ments in product enemies. The framework for selectable marker genes in transgenic crop plants is a case of the science not supporting the politics. Transgenic Act 14, 261–289.

In reply to the letter to Kameswara Rao, Shantharao & Moses, Pushpa Bhargava makes the following points.

MAYICO, the Indian company referred to in the letter, has 26% of its shares owned by Monomanto, and according to company law, the posts that are attacking Bt-cotton are resistant to the Bt gene, a fact conceded by Monomanto itself. With regard to the adverse effects of GMOs, Jeffrey Smith’s Book, ‘Genetic Roulette’ documents the health risks of genetically engineered food with over 1,000 references. What is concerning is that the supporters of GM crops doubt the credibility of every study on the possible or proven adverse effects of GMOs, whilst accepting every study supporting GM crops, regardless of their scientific quality. There are sound scientific reasons as to why a GM crop should not be grown in the country that is the centre of its origin. There is an internationally accepted consent to this effect. Growing maize in Mexico is a good example. This was done surreptitiously and was criticized by scientists the world over. That antibiotic resistance markers do not pose any threat is not true – there are many references to this effect in the literature. Many countries have strategies for developing GM varieties that do not use antibiotic resistance markers. There were these technologies not used for Bt-brinjal?

PUSHPA M. BHARGAVA

Chairperson of the Supreme Court of India on the Genetic Engineering Appraisal Committee of the Government of India, former member, National Academy of Science Adviser Board, Government of India

A response to the article by Pushpa M. Bhargava in Microbiology Today, August 2010 (pp. 174–177).

Brinjal is an important tool for the control of fruit and shoot borer
Tuberculosis

Tuberculosis, caused by Mycobacterium tuberculosis, kills over a million people each year and causes prolonged illness in many millions more. Although it can be treated using prolonged therapy with cheap drugs, resistant strains of the bacterium are spreading. New antibiotics that attack new targets in the bacterium are therefore needed. The genome of M. tuberculosis has been sequenced and biochemical processes that are essential for the bacterium but absent from its animal hosts, including people, have been identified. One of these is the biosynthesis of branched-chain amino acids. Indeed, M. tuberculosis strains that cannot synthesize branched-chain amino acids cannot grow inside animals. This is much too good an opportunity to miss in trying to develop new antibiotics.

The first step in branched-chain amino acid biosynthesis requires an acetohydroxyacid synthetase (AHAS) enzyme. Searching an acetohydroxyacid synthetase complex. Indeed, AHAS enzymes have been observed to be active under some conditions. Two (AaG and AaU) assumed particular importance in immune cells of infected animals, and at low oxygen levels or acidic pH. The overall profile suggested that these two genes have a role in energy provision for the cells rather than in amino acid biosynthesis. Once the researchers had obtained the pure proteins, only two of the subunits showed any enzyme activity. The complex process of protein synthesis means that there can be many reasons for this, other than the proteins really being inactive. The kinetic parameters of the two proteins showed several differences from previously studied AHAS enzymes – a tantalizing inducement to the researchers to continue their efforts to obtain pure, active protein from all AHAS genes. This study marks a step forward in developing new anti-tuberculosis drugs.

Novel Lyme

Lyme borreliosis is a multi-system disorder and the most common infectious arthropod-borne disease in Europe and the United States. The disease is induced by a spiral unicellular Gram-negative bacterium of the Borrelia burgdorferi sensu lato complex that is transmitted by hard-bodied ticks (Ixodidae) throughout the temperate zones of the northern hemisphere. A large number of Borrelia isolates have been obtained from various vertebrate species, including humans. At present, 18 species of B. burgdorferi sensu lato are recognized around the world. In a recent study, strains isolated from ear biopsies of cotton mice (Peromyscus gossypinus) and the Florida or Eastern woodrat (Neotoma cinerea) infected with the Borrelia burgdorferi sensu lato complex were active under some conditions. Two (AaG and AaU) assumed particular importance in immune cells of infected animals, and at low oxygen levels or acidic pH. The overall profile suggested that these two genes have a role in energy provision for the cells rather than in amino acid biosynthesis. Once the researchers had obtained the pure proteins, only two of the subunits showed any enzyme activity. The complex process of protein synthesis means that there can be many reasons for this, other than the proteins really being inactive. The kinetic parameters of the two proteins showed several differences from previously studied AHAS enzymes – a tantalizing inducement to the researchers to continue their efforts to obtain pure, active protein from all AHAS genes. This study marks a step forward in developing new anti-tuberculosis drugs.

Rabbitpox vs smallpox

Smallpox is the only disease of humans that has ever been eradicated. On average, it killed a third of the people it infected, and left those that recovered with scars from its characteristic pox. Even at the start of the 1960s, it killed around 2 million people each year worldwide. It only infected humans, and this feature made eradication possible through a combination of vaccination and public health measures. By 1980, no cases were being reported, even from remote areas of the world, and the only risks remained from virus samples held in laboratories, and now by the military in the USA and Russia. The orthopoxvirus variola virus (VARV) that had killed so many people was essentially extinct. When smallpox was eradicated, there were very few medical treatments available for patients, and the vaccine was effective in the pre-HIV/AIDS era. Until now, there has been no perceived need to continue working on improving treatments which would certainly have been possible due to advances in our knowledge of virus biology. However, these advances also mean that it is now perfectly possible to synthesize the genome of VARV and use it to restart the infection cycle. There is concern in the USA that it might be used in bioterrorism. Asymptomatic smallpox patients have been a fundamental problem in starting work again on smallpox, namely what animal to use instead of humans!

All the animals that have been used in the past required the infection to start either after an injection of the virus or from inhaling very large numbers of VARV particles. However, one of the characteristics of smallpox was that it could be transmitted as an aerosol and less than 100 virus particles were needed to start an infection in a person. The disease rabbitpox is caused by another large, double-stranded virus from the orthopoxvirus (RPXV), and the researchers make the case for it to be the ideal replacement for study. Its DNA sequence turns out to be very similar to vaccinia virus, the virus used in developing effective anti-smallpox vaccines. Some researchers think RPXV could be a strain of vaccinia virus, although it has three extra genes that are involved with virulence. Rabbitpox is an interesting disease in its own right. It occurs in laboratory colonies, but not in wild rabbits. The first record of this disease, from the Rockefeller Institute in 1930–33, killed about half the rabbits and was very contagious. The symptoms were similar to those of smallpox. A less lethal version broke out in Utrecht in 1941, and all subsequent outbreaks have been of this version, although none have occurred since the 1960s.

The disease is spread rapidly amongst rabbits as an aerosol. There is a spectrum of symptoms, partly depending on the amount of virus particles that start the infection, and this matches the range of smallpox symptomatics in people. One difference is that rabbitpox damages the lungs, which did not happen with smallpox. Since developing improved treatments is a priority, the two scientists were very pleased that the drug ST-246 (SIGA), effective against many orthopoxviruses, also protected rabbits against lethal levels of RPXV aerosols. In addition, an anti-smallpox vaccine protected all the rabbits in a test group from RPXV aerosols. From this evaluation, the researchers are sure that rabbits and rabbitpox can teach us about new ways to protect ourselves from any re-emergence of smallpox.

Smallpox virus particles. Istock / Science Photo Library
Q fever is a disease caused by Coxiella burnetii, a Gram-negative bacterial species with a very unusual life history. The reasons for interest in it, apart from its interesting biology, are that it causes an important disease of livestock and a disease in humans that has been investigated for its biological warfare potential. Two recent scientific developments have finally started to open up understanding of C. burnetii. Until 2009, it was impossible to grow C. burnetii outside living cells, but a complex synthetic medium has now been identified. In addition, one isogenic mutant has been made, which should start to improve understanding of how it interacts with its host cells. This recent review is therefore a very timely reminder of the current state of knowledge of this strange bacterium.

Unlike most bacteria, C. burnetii is an obligate intracellular parasite, although it can survive in an infective form in animal tissues and fluids in the environment. Indeed, it is surprisingly difficult to decontaminate an area infected with C. burnetii. Its cells have several forms, but the relationship between them is not really understood.

The consequences of an infection range from no apparent symptoms to fever, pneumonia and death, although other symptoms, including chronic fatigue or endocarditis, can appear years after the infection starts. Domestic animals can be infected, but are symptomless and shed vast quantities of the bacterium into milk, faeces and urine. Infection in ruminants can have the consequence of spontaneous abortion and infertility. People are usually infected from inhaling aerosols generated by animals or from consumption of dairy products. An outbreak of Q fever in the Netherlands that started in 2007 with the consequence of waves of spontaneous abortions in dairy goats and sheep has so far caused over 3,763 cases in humans, including 11 deaths, despite increasingly stringent measures to curtail its spread.

Q fever has been used in biological weapons programmes by both the USA and former Soviet Union. The attraction is that an aerosol can cause an incapacitating pneumonia from an extremely small dose that could not be detected.

Infections in marmots can have the consequence of spontaneous abortion and infertility. People are usually infected from inhaling aerosols generated by animals or from consumption of dairy products. An outbreak of Q fever in the Netherlands that started in 2007 with the consequence of waves of spontaneous abortions in dairy goats and sheep has so far caused over 3,763 cases in humans, including 11 deaths, despite increasingly stringent measures to curtail its spread.

Q fever has been used in biological weapons programmes by both the USA and former Soviet Union. The attraction is that an aerosol can cause an incapacitating pneumonia from an extremely small dose that could not be detected.

New and re-emerging parasitic, fungal, bacterial and viral diseases, commonly termed emerging and re-emerging infections, have long been recognized as major problems in human and veterinary medicine. Considerable research efforts are focused on understanding the manifestations and processes behind emerging infections. It is therefore not surprising that this is now the 9th volume of the Emerging Infections series, which is born out of sessions on new and emerging pathogens of the IDSA and ICAAC annual meetings. In 18 chapters written by experts in their respective areas of research, this book addresses a wide range of issues, covering clinical aspects, epidemiology and disease symptoms, but more general concepts and novel ideas are also addressed. Emerging Infections 9 is therefore not just of interest to clinicians and others involved in public and veterinary health, but provides a very good overview of recent developments to those working on emerging pathogens or those simply interested in the subject, including students. Not surprisingly, given its global impact, a case study for H1N1 influenza is included, but other chapters dealing with various viral (Hepatitis E, HTLV-I, novel corona virus infections, HIV-associated malignancies) as well as bacterial (drug-resistant bacilli, Acinetobacter, buruli ulcer) and parasitic (Plasmodium knowlesi and neglected tropical diseases) infections provide interesting reading. Of particular interest are chapters on the role of cytomegalovirus in transplantation and the challenging hypotheses on the role of gat viruses of algae (mimivirus) in pneumonia.

Review

More general chapters deal with infections in long-term care facilities (of increasing importance in Western society) and diseases associated with travel and migration, including the transport of animals. The concept of ‘One World–One Health’ is explained in a separate chapter which emphasizes the importance of inter-species transmission of pathogens and distribution of disease vectors; this is of increasing importance to Europe and is a must-read to everyone new to the subject for its overall relevance.

Interestingly, emerging infectious diseases of plants are described extensively in the final chapter and, although few plant biologists would purchase the book for this alone, it makes for very interesting reading to those less familiar with the subject.

This book is highly recommended to anyone interested in keeping up to date with developments in this area of research, but contains enough information to appeal to newcomers. **Review**

Q the fever

Infection in marmots can have the consequence of spontaneous abortion and infertility. People are usually infected from inhaling aerosols generated by animals or from consumption of dairy products. An outbreak of Q fever in the Netherlands that started in 2007 with the consequence of waves of spontaneous abortions in dairy goats and sheep has so far caused over 3,763 cases in humans, including 11 deaths, despite increasingly stringent measures to curtail its spread.

Q fever has been used in biological weapons programmes by both the USA and former Soviet Union. The attraction is that an aerosol can cause an incapacitating pneumonia from an extremely small dose that could not be detected.

SGM journals in the news

The end of 2010 and beginning of 2011 saw a good amount of press coverage for the SGM’s four journals, in particular Microbiology and Journal of Medical Microbiology.

A media release promoting the Microbiology paper ‘Recombinant lentivirus vector expressing lindane-cistromine can modulate the fatty acid composition of host adipose tissue in mice’ was sent out just before Christmas. The release, entitled Designer probiotics could reduce obesity, generated articles in the Daily Express, Irish Examiner as well as the Telegraph – who held off printing their story until early January, presumably to pique the interest of those trying to combat the excesses of Christmas.

A second wave of interest in early January in the novel bacterial species found aboard the Titanic saw more coverage for ISME throughout news outlets in Australia, the US and Argentina (see article on p. 3).

A paper in Journal of Medical Microbiology, describing the effectiveness of cold plasma at treating multi-drug resistant infections, highlighted a slightly more unusual solution to the problem of antibiotic resistance. The story was a hit in popular science magazines in the US and Australia.

All press releases can be viewed on our website at www.sgm.ac.uk/news/media_releases.cfm

Emerging Infections 9

Editors: W.M. Scheld, M.L. Grayson & J.F. Hughes
Publisher: American Society for Microbiology (2011)
Review: Ulrich Desselberger, Cambridge

This book updates the comprehensive overview of picornavirus research by Semler & Wimmer published in 2002. It brings together an amazingly wide spectrum of recent work on the molecular biology, evolution and pathogenesis of this large family of viruses.

A full review is available on the website at www.sgm.ac.uk/pubs/micro_today/ reviews.cfm, but suffice to...
A huge amount of information is packed into just under 350 pages in this book (plus references and index), yet it is written in a very readable style. The author, a distinguished viral immunologist, tells the story of the big impact of virus diseases on communities and world history, how scientists discovered the causative agents and developed methods of control, and laments how human folly and politics have often hindered progress in combating these plagues.

To set the scene, the first two chapters cover the principles of virology and the principles of immunology. Readers who are new to virology will find Oldstone’s concise but thorough overview of virology and the principles of immunology helpful. Readers who are old hands will find it an enjoyable and illuminating read.

In the next chapter, Oldstone reminisces about the development of vaccines. In the early part of the 20th century, poliomyelitis (the only human disease to be eradicated by vaccination), yellow fever, measles and mumps were all rife in the world, and it is often forgotten how drastically the course of these illnesses has been altered by vaccines since the 1950s. Oldstone’s account of the development of vaccines is well-researched and well-written, and is full of entertaining anecdotes about the people involved. It is a fascinating read for anyone interested in the history of medicine.

The chapter on vaccines is followed by one on vaccines against animal viruses. It is a marvellous read, and shows how much the development of vaccines for humans and animals is intertwined. It also shows how much more can be achieved in this area.

In the final chapter, Oldstone considers the future of virology. He considers how the development of vaccines has failed to keep pace with the development of viruses, and that new viruses have been emerging faster than we can cope with them. He considers the future of virology, and suggests that we need to develop new methods of detecting and controlling viruses.

Virologists, molecular biologists, cell biologists, immunologists, vaccinologists and infectious disease physicians. It should have a firm place in university and hospital departmental libraries, serving students carrying out relevant biomedical research.

To our panel of book reviewers, email y.taylor@sgm.ac.uk

To order our panel of book reviewers, email y.taylor@sgm.ac.uk
CARBAPENEMASES (carbapenem-hydrolysing β-lactamases) matter because carbapenems are often the last ‘good’ antibiotics for infections due to multi-resistant, Gram-negative opportunists. Several carbapenemases are already circulating: one, KPC, has disseminated in the USA, Israel and Greece; another, VIM, is widespread among Klebsiella in Greece. These have been imported into the UK and there is some domestic spread of KPC in north-west England.

The first isolates with the new NDM enzyme – E. coli and K. pneumoniae – were collected in Sweden in 2008 from a patient transferred a day earlier from New Delhi. As a metallo-β-lactamase, it was named after the source city, ‘New Delhi Metallo’. By mid-2008, the UK Health Protection Agency was seeing NDM too, with 37 isolates from 29 patients and 25 hospitals by December 2009. Strikingly, 17 patients had travelled to India or Pakistan and 14 had been hospitalized there. This prompted action. First, we collaborated with Tim Walsh and colleagues at the University of Wales, Cardiff, who were involved in the original discovery. Second, we enabled groups across India and Pakistan to seek the blaNDM gene by PCR.

Third, in July 2009, we sent a ‘National Resistance Alert’ to UK clinical microbiologists warning of NDM-1 and its link to the subcontinent.

In spring 2010, a Mumbai group published on 22 cases infected with NDM-1 Enterobacteriaceae and the US CDC reported 3 cases, all previously hospitalized in India. This passed quietly. Then, in August, Lancet Infectious Diseases published our study showing dissemination in India and repeated import to the UK (Kumarasamy et al., 2010; Lancet Infect Dis 10, 597–602), and my job changed. We had TV from China, Japan, Brazil, Europe, Canada and India, and tried to explain that ‘NDM itself isn’t a superbug, but it makes a superbug’ and ‘the bacterium carries the plasmid that carries the gene that encodes the enzyme that eats the antibiotic’.

Back to microbiology. The earliest NDM-1 producers date from 2006 in New Delhi. NDM-1 has now been reported from Australia, Austria, Belgium, Denmark, France, Germany, Hong Kong, Israel, Japan, Kenya, Norway, The Netherlands, Oman, Singapore, Slovenia, Sweden and Taiwan, as well as the UK and the USA, with many cases linking to the Indian subcontinent. Presentations vary from benign colonizations to septicæmias, with several deaths. Urinary infections are commonest. Those hospitalized in India and Pakistan include medical tourists, but also accident victims and those who divide lives and treatment between the UK and the subcontinent. K. pneumoniae and E. coli are the main hosts, but NDM occurs in other Enterobacteriaceae and Acinetobacter spp., reflecting carriage by promiscuous plasmids easily spread among genera. The common denominator is extreme multiresistance, complicating treatment. Most producers remain susceptible to colistin (rather toxic), tigecycline (unsuitable for urinary infections) and fosfomycin (only consistent against E. coli). No drug in clinical development is active. This isn’t a pretty set of choices.

The combination of promiscuity and extreme resistance distinguishes NDM-1 from other carbapenemases. KPC enzymes are commoner but are inactivated by a new β-lactamase inhibitor in development (NXL104; AstraZeneca); NDM-1 isn’t. The other concern is the link to India, where state-of-the-art medicine balances on unregulated antibiotic use (though this may soon change, with enforcement of prescription law), fiercely competing generics, and an overloaded infrastructure where 650 million citizens lack a flush toilet. Bacteria with cephalosporin-hydrolysing, ‘extended-spectrum’ β-lactamases circulate in the community gut flora and are acquired by tourists. It is important to know whether NDM too is circulating outside hospitals.

Such questions underscore the need for robust resistance surveillance in a world of mass travel and globalized medicine. Also vital are infection control to stop hospital spread, regulation of antibiotic use and reinvigoration of antibiotic development. Unfortunately, many pharmaceutical companies have down-graded antibiotic development, reflecting the challenges of discovery, the considerable regulatory hurdles and the poor profitability of antibiotics compared with other medicines. These challenges must be overcome, for modern medicine depends on infection being treatable. If this is lost, through resistance, we will slip back to the situation of three procedures unthinkable.

DAVID LIVERMORE, Director of the Antibiotic Resistance Monitoring & Reference Laboratory (ARML), HPAs Centre for Infections, 61 Colindale Avenue, London NW9 5EQ (email david.livermore@hpa.org.uk)

Please note that views expressed in Comment do not necessarily reflect official policy of the SGM Council.